【題目】已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上,過(guò)點(diǎn)的直線交拋物線兩點(diǎn),線段的中點(diǎn)為,且滿足

1)若直線的斜率為1,求點(diǎn)的坐標(biāo);

2)若,求四邊形面積的最大值.

【答案】12

【解析】

(1)由得拋物線的方程為,設(shè)直線方程為,與拋物線方程聯(lián)立可得到的縱坐標(biāo),從而得到點(diǎn)的坐標(biāo).
(2) 設(shè)直線方程為,與拋物線方程聯(lián)立可得到,又,可得,則可求出的范圍,然后用弦長(zhǎng)公式求出的長(zhǎng),求出點(diǎn)的距離,,然后再求最大值.

解(1)點(diǎn)是拋物線的焦點(diǎn),則拋物線的方程為

設(shè)直線方程為,,

,得,

所以,

2)設(shè)直線方程為

,得,

從而

由于為線段的中點(diǎn),則,即

,則,從而

點(diǎn)在拋物線上,則,

由于,得,

三點(diǎn)共線時(shí),,所以

點(diǎn)的距離

,

,則

在區(qū)間遞減,遞增,,此時(shí)

所以

四邊形面積的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)任意正整數(shù)n,總存在正整數(shù)m,使得Snam,則稱(chēng)數(shù)列{an}S數(shù)列

1S數(shù)列的任意一項(xiàng)是否可以寫(xiě)成其某兩項(xiàng)的差?請(qǐng)說(shuō)明理由.

2)①是否存在等差數(shù)列為S數(shù)列,若存在,請(qǐng)舉例說(shuō)明;若不存在,請(qǐng)說(shuō)明理由.

②是否存在正項(xiàng)遞增等比數(shù)列為S數(shù)列,若存在,請(qǐng)舉例說(shuō)明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求曲線在點(diǎn)處的切線方程;

2)求函數(shù)的單調(diào)區(qū)間;

3)判斷函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)幾何體的三視圖如圖所示,正視圖為等腰直角三角形,俯視圖中虛線平分矩形的面積,則該幾何體的體積為_____,其外接球的表面積為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2021年我省將實(shí)施新高考,新高考“依據(jù)統(tǒng)一高考成績(jī)、高中學(xué)業(yè)水平考試成績(jī),參考高中學(xué)生綜合素質(zhì)評(píng)價(jià)信息”進(jìn)行人才選拔。我校2018級(jí)高一年級(jí)一個(gè)學(xué)習(xí)興趣小組進(jìn)行社會(huì)實(shí)踐活動(dòng),決定對(duì)某商場(chǎng)銷(xiāo)售的商品A進(jìn)行市場(chǎng)銷(xiāo)售量調(diào)研,通過(guò)對(duì)該商品一個(gè)階段的調(diào)研得知,發(fā)現(xiàn)該商品每日的銷(xiāo)售量(單位:百件)與銷(xiāo)售價(jià)格(元/件)近似滿足關(guān)系式,其中為常數(shù)已知銷(xiāo)售價(jià)格為3元/件時(shí),每日可售出該商品10百件。

(1)求函數(shù)的解析式;

(2)若該商品A的成本為2元/件,根據(jù)調(diào)研結(jié)果請(qǐng)你試確定該商品銷(xiāo)售價(jià)格的值,使該商場(chǎng)每日銷(xiāo)售該商品所獲得的利潤(rùn)(單位:百元)最大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓的一個(gè)頂點(diǎn)為,離心率為.

1)求橢圓的方程;

2)若直線與橢園C交于,兩點(diǎn),直線與線的斜率之積為,證明:直線過(guò)定點(diǎn),并求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市環(huán)保部門(mén)為了讓全市居民認(rèn)識(shí)到冬天燒煤取暖對(duì)空氣數(shù)值的影響,進(jìn)而喚醒全市人民的環(huán)保節(jié)能意識(shí)。對(duì)該市取暖季燒煤天數(shù)與空氣數(shù)值不合格的天數(shù)進(jìn)行統(tǒng)計(jì)分析,得出下表數(shù)據(jù):

(天)

9

8

7

5

4

(天)

7

6

5

3

2

(1)以統(tǒng)計(jì)數(shù)據(jù)為依據(jù),求出關(guān)于的線性回歸方程;

2)根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)該市燒煤取暖的天數(shù)為20時(shí)空氣數(shù)值不合格的天數(shù).

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn),點(diǎn)均在圓上,且,過(guò)點(diǎn)的平行線分別交兩點(diǎn).

1)求點(diǎn)的軌跡方程;

2)過(guò)點(diǎn)的動(dòng)直線與點(diǎn)的軌跡交于兩點(diǎn).問(wèn)是否存在常數(shù),使得點(diǎn)為定值?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:過(guò)點(diǎn)A,兩個(gè)焦點(diǎn)為(-1,0),(1,0)。

(Ⅰ)求橢圓C的方程;

(Ⅱ)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。

查看答案和解析>>

同步練習(xí)冊(cè)答案