【題目】在直角坐標系中,曲線的參數(shù)方程為,( 為參數(shù)),為曲線上的動點,動點滿足(且),點的軌跡為曲線.
(1)求曲線的方程,并說明是什么曲線;
(2)在以坐標原點為極點,以軸的正半軸為極軸的極坐標系中, 點的極坐標為,射線與的異于極點的交點為,已知面積的最大值為,求的值.
【答案】(1)見解析;(2)2
【解析】分析:(1)設(shè), ,根據(jù),推出,代入到,消去參數(shù)即可求得曲線的方程及其表示的軌跡;(2)法1:先求出點的直角坐標,再求出直線的普通方程,再根據(jù)題設(shè)條件設(shè)點坐標為,然后根據(jù)兩點之間距離公式及三角函數(shù)的圖象與性質(zhì),結(jié)合面積的最大值為,即可求得的值;法2:將, 代入,即可求得,再根據(jù)三角形面積公式及三角函數(shù)的圖象與性質(zhì),結(jié)合面積的最大值為,即可求得的值.
詳解:(1)設(shè), ,由得.
∴
∵在上
∴即(為參數(shù)),消去參數(shù)得.
∴曲線是以為圓心,以為半徑的圓.
(2)法1: 點的直角坐標為.
∴直線的普通方程為,即.
設(shè)點坐標為,則點到直線的距離.
∴當時,
∴的最大值為
∴.
法2:將, 代入并整理得: ,令得.
∴
∴
∴當時, 取得最大值,依題意,∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足sin2B+sin2C=sin2A+2sinBsinCsin(B+C). (Ⅰ)求角A的大;
(Ⅱ)若a=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,,設(shè).
(1)求;
(2)判斷數(shù)列是否為等比數(shù)列,并說明理由;
(3)求的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩組各有三名同學(xué),他們在一次測試中的成績分別為:甲組:88、89、90;乙組:87、88、92.如果分別從甲、乙兩組中隨機選取一名同學(xué),則這兩名同學(xué)的成績之差的絕對值不超過3的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的首項a1=1,且滿足a2n+1=2a2n﹣1與a2n=a2n﹣1+1,則S20= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)選修4—4,坐標系與參數(shù)方程
已知曲線,直線:(為參數(shù)).
(I)寫出曲線的參數(shù)方程,直線的普通方程;
(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某互聯(lián)網(wǎng)大會上,為了提升安全級別,將5名特警分配到3個重要路口執(zhí)勤,每個人只能選擇一個路口,每個路口最少1人,最多3人,且甲和乙不能安排在同一個路口,則不同的安排方法有( )
A. 180種 B. 150種 C. 96種 D. 114種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),則下列說法不正確的是( )
A.其圖象開口向上,且始終與軸有兩個不同的交點
B.無論取何實數(shù),其圖象始終過定點
C.其圖象對稱軸的位置沒有確定,但其形狀不會因的取值不同而改變
D.函數(shù)的最小值大于
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將5名報名參加運動會的同學(xué)分別安排到跳繩、接力,投籃三項比賽中(假設(shè)這些比賽都不設(shè)人數(shù)上限),每人只參加一項,則共有種不同的方案;若每項比賽至少要安排一人時,則共有種不同的方案,其中的值為( )
A. 543 B. 425 C. 393 D. 275
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com