【題目】在△ABC中,a,b,c分別為角A,B,C所對(duì)的三邊,a2﹣(b﹣c)2=bc,
(1)求角A;
(2)若BC=2 ,角B等于x,周長(zhǎng)為y,求函數(shù)y=f(x)的取值范圍.
【答案】
(1)解:∵a2﹣(b﹣c)2=bc∴a2﹣b2﹣c2=﹣bc
∴cosA= 又0<A<∴A=
(2)解:∵ ∴AC=
同理AB=
∴y=4sinx+4sin( )+2 = .
∵A= ∴0<B=x<
故x+ ∈( ),∴sin(x+ )∈( ,1]∴y∈(4 ,6 ]
【解析】(1)考查余弦定理,將a2﹣(b﹣c)2=bc變形,即可求出cosA,從而求出A(2)利用正弦定理將y關(guān)于x的函數(shù)式寫(xiě)出來(lái),利用A的范圍求其值域
【考點(diǎn)精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:;余弦定理:;;才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)設(shè).
①若,求函數(shù)的零點(diǎn);
②若函數(shù)存在零點(diǎn),求的取值范圍.
(2)設(shè),若對(duì)任意恒成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩同學(xué)利用暑假到某縣進(jìn)行社會(huì)實(shí)踐,對(duì)該縣的養(yǎng)雞場(chǎng)連續(xù)六年來(lái)的規(guī)模進(jìn)行調(diào)查研究,得到如下兩個(gè)不同的信息圖:
(A)圖表明:從第1年平均每個(gè)養(yǎng)雞場(chǎng)出產(chǎn)1萬(wàn)只雞上升到第6年平均每個(gè)養(yǎng)雞場(chǎng)出產(chǎn)2萬(wàn)只雞:
(B)圖表明:由第1年養(yǎng)雞場(chǎng)個(gè)數(shù)30個(gè)減少到第6年的10個(gè).
請(qǐng)你根據(jù)提供的信息解答下列問(wèn)題:
(1)第二年的養(yǎng)雞場(chǎng)的個(gè)數(shù)及全縣出產(chǎn)雞的總只數(shù)各是多少?
(2)哪一年的規(guī)模最大?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)C1:y2=8ax(a>0),直線(xiàn)l傾斜角是45°且過(guò)拋物線(xiàn)C1的焦點(diǎn),直線(xiàn)l被拋物線(xiàn)C1截得的線(xiàn)段長(zhǎng)是16,雙曲線(xiàn)C2: ﹣ =1的一個(gè)焦點(diǎn)在拋物線(xiàn)C1的準(zhǔn)線(xiàn)上,則直線(xiàn)l與y軸的交點(diǎn)P到雙曲線(xiàn)C2的一條漸近線(xiàn)的距離是( )
A.2
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)滿(mǎn)足:對(duì)任意x,y∈R,都有f(x+y)=f(x)f(y)﹣f(x)﹣f(y)+2成立,且x>0時(shí),f(x)>2,
(1)求f(0)的值,并證明:當(dāng)x<0時(shí),1<f(x)<2.
(2)判斷f(x)的單調(diào)性并加以證明.
(3)若函數(shù)g(x)=|f(x)﹣k|在(﹣∞,0)上遞減,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,其中a為實(shí)數(shù).
(1)當(dāng) 時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(2)當(dāng)x≥ 時(shí),若關(guān)于x的不等式f(x)≥0恒成立,試求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com