已知定義在R上的奇函數(shù)有最小正周期2,且當(dāng)時(shí),
(1)求的值;
(2)求在[-1,1]上的解析式.

(1);(2)

解析試題分析:解題思路:(1)利用周期性與奇偶性求解,即解得;(2)利用奇偶性求解析式.規(guī)律總結(jié):函數(shù)的單調(diào)性、奇偶性、周期性的綜合運(yùn)用,要記住一些常見結(jié)論,且要真正理解定義.
試題解析: (1)∵是周期為2的奇函數(shù),
,

(2)由題意知,.當(dāng)時(shí),
是奇函數(shù),,
綜上,
考點(diǎn):函數(shù)的奇偶性、周期性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(a,b為常數(shù))且方程f(x)-x+12=0有兩個(gè)實(shí)根為x1="3," x2=4.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,某人想制造一個(gè)支架,它由四根金屬桿構(gòu)成,其底端三點(diǎn)均勻地固定在半徑為的圓上(圓在地面上),三點(diǎn)相異且共線,與地面垂直. 現(xiàn)要求點(diǎn)到地面的距離恰為,記用料總長(zhǎng)為,設(shè)

(1)試將表示為的函數(shù),并注明定義域;
(2)當(dāng)的正弦值是多少時(shí),用料最省?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知命題p:函數(shù)上單調(diào)遞減.
⑴求實(shí)數(shù)m的取值范圍;
⑵命題q:方程內(nèi)有一個(gè)零點(diǎn).若p或q為真,p且q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù).
(1)若,函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè),若對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),試討論是否存在,使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)本題有2個(gè)小題,第一小題滿分6分,第二小題滿分1分.
設(shè)常數(shù),函數(shù)
(1)若=4,求函數(shù)的反函數(shù);
(2)根據(jù)的不同取值,討論函數(shù)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知奇函數(shù) f (x) 在 (-¥,0)∪(0,+¥) 上有意義,且在 (0,+¥) 上是增函數(shù),f (1) = 0,又函數(shù) g(q) = sin 2q+ m cos q-2m,若集合M =" {m" | g(q) < 0},集合 N =" {m" | f [g(q)] < 0},求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若函數(shù)的反函數(shù)為,則        

查看答案和解析>>

同步練習(xí)冊(cè)答案