如右圖所示,在四棱錐P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動.
(1)求三棱錐E—PAD的體積;
(2)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說明理由;
(3)證明:無論點(diǎn)E在邊BC的何處,都有PE⊥AF.
(1)三棱錐E—PAD的體積
V=PA·S△ADE=PA·=.
(2)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),EF與平面PAC平行.
∵在△PBC中,E、F分別為BC、PB的中點(diǎn),
∴EF∥PC,又EF⊄平面PAC,而PC⊂平面PAC,
∴EF∥平面PAC.
(3)證明:∵PA⊥平面ABCD,BE⊂平面ABCD,
∴EB⊥PA,
又EB⊥AB,AB∩AP=A,AB,AP⊂平面PAB,
∴EB⊥平面PAB,又AF⊂平面PAB,∴AF⊥EB,
又PA=AB=1,點(diǎn)F是PB中點(diǎn),
∴AF⊥PB又∵PB∩BE=B,
PB,BE⊂面PBE,
∴AF⊥面PBE,
∵PE⊂面PBE,∴PE⊥AF.
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省株洲市高三第五次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
四棱錐的三視圖如右圖所示,其中,四棱錐的五個(gè)頂點(diǎn)都在一個(gè)球面上,則該球表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
四棱錐的三視圖如右圖所示,四棱錐的五個(gè)頂點(diǎn)都在一個(gè)球面上,、分別是棱、的中點(diǎn),直線被球面所截得的線段長為,則該球表面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年海南省高三高考極限壓軸卷理科數(shù)學(xué)試卷(解析版) 題型:填空題
四棱錐的三視圖如右圖所示,四棱錐的五個(gè)頂點(diǎn)都在一個(gè)球面上,、分別是棱、的中點(diǎn),直線被球面所截得的線段長為,則該球表面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)空間圖形的平行關(guān)系、垂直關(guān)系專項(xiàng)訓(xùn)練(河北) 題型:解答題
如右圖所示,在四棱錐P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動.
(1)求三棱錐E—PAD的體積;
(2)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說明理由;
(3)證明:無論點(diǎn)E在邊BC的何處,都有PE⊥AF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com