【題目】圖1是某高架橋箱梁的橫截面,它由上部路面和下部支撐箱兩部分組成.如圖2,路面寬度,下部支撐箱CDEF為等腰梯形(),且.為了保證承重能力與穩(wěn)定性,需下部支撐箱的面積為,高度為2m且,若路面AB.側(cè)邊CF和DE,底部EF的造價(jià)分別為4a千元/m,5a千元/m,6a千元/m(a為正常數(shù)),.
(1)試用θ表示箱梁的總造價(jià)y(千元);
(2)試確定cosθ的值,使總造價(jià)最低?并求最低總造價(jià).
【答案】(1),,其中;(2)當(dāng)的值為時(shí),總造價(jià)最低,為千元.
【解析】
(1)過(guò)點(diǎn)F作于點(diǎn)H,由三角函數(shù)及支撐面面積可得,寫(xiě)出總造價(jià)與θ的關(guān)系,并分析函數(shù)定義域;
(2)利用導(dǎo)數(shù)求函數(shù)的最小值,即可得到結(jié)論.
(1)過(guò)點(diǎn)F作于點(diǎn)H,則,
所以在中,,.
設(shè),
則由題意得,解得,
所以,
故路面AB的造價(jià)為千元,
側(cè)邊CF和DE的造價(jià)為千元.
底部EF的造價(jià)為,
所以,
又因?yàn)?/span>,
則,
設(shè)銳角滿足,則.
因此,,,其中.
(2)由(1)知
設(shè),其中,
則.
令,則.
因?yàn)?/span>.
所以,列表如下:
- | 0 | + | ||||
4 |
所以當(dāng)時(shí),,有.
答:當(dāng)的值為時(shí),總造價(jià)最低,為千元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠加工的零件按箱出廠,每箱有10個(gè)零件,在出廠之前需要對(duì)每箱的零件作檢驗(yàn),人工檢驗(yàn)方法如下:先從每箱的零件中隨機(jī)抽取4個(gè)零件,若抽取的零件都是正品或都是次品,則停止檢驗(yàn);若抽取的零件至少有1個(gè)至多有3個(gè)次品,則對(duì)剩下的6個(gè)零件逐一檢驗(yàn).已知每個(gè)零件檢驗(yàn)合格的概率為0.8,每個(gè)零件是否檢驗(yàn)合格相互獨(dú)立,且每個(gè)零件的人工檢驗(yàn)費(fèi)為2元.
(1)設(shè)1箱零件人工檢驗(yàn)總費(fèi)用為元,求的分布列;
(2)除了人工檢驗(yàn)方法外還有機(jī)器檢驗(yàn)方法,機(jī)器檢驗(yàn)需要對(duì)每箱的每個(gè)零件作檢驗(yàn),每個(gè)零件的檢驗(yàn)費(fèi)為1.6元.現(xiàn)有1000箱零件需要檢驗(yàn),以檢驗(yàn)總費(fèi)用的數(shù)學(xué)期望為依據(jù),在人工檢驗(yàn)與機(jī)器檢驗(yàn)中,應(yīng)該選擇哪一個(gè)?說(shuō)明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)APP軟件層出不窮.現(xiàn)從某市使用A和B兩款訂餐軟件的商家中分別隨機(jī)抽取100個(gè)商家,對(duì)它們的“平均送達(dá)時(shí)間”進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如下.
(1)已知抽取的100個(gè)使用A款訂餐軟件的商家中,甲商家的“平均送達(dá)時(shí)間”為18分鐘,F(xiàn)從使用A款訂餐軟件的商家中“平均送達(dá)時(shí)間”不超過(guò)20分鐘的商家中隨機(jī)抽取3個(gè)商家進(jìn)行市場(chǎng)調(diào)研,求甲商家被抽到的概率;
(2)試估計(jì)該市使用A款訂餐軟件的商家的“平均送達(dá)時(shí)間”的眾數(shù)及平均數(shù);
(3)如果以“平均送達(dá)時(shí)間”的平均數(shù)作為決策依據(jù),從A和B兩款訂餐軟件中選擇一款訂餐,你會(huì)選擇哪款?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,斜三棱柱中,是邊長(zhǎng)為2的正三角形,為的中點(diǎn),平面,點(diǎn)在上,,為與的交點(diǎn),且與平面所成的角為.
(1)求證:平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我國(guó)南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》一書(shū)中,用如圖所示的三角形(楊輝三角)解釋了二項(xiàng)和的乘方規(guī)律.右邊的數(shù)字三角形可以看作當(dāng)n依次取0,1,2,3,…時(shí)展開(kāi)式的二項(xiàng)式系數(shù),相鄰兩斜線間各數(shù)的和組成數(shù)列.例:,,,….
(1)寫(xiě)出數(shù)列的通項(xiàng)公式(結(jié)果用組合數(shù)表示),無(wú)需證明;
(2)猜想,與的大小關(guān)系,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),時(shí),恒成立,求正整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,曲線的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù)).
(1)若,是圓上一動(dòng)點(diǎn),求點(diǎn)到直線的距離的最小值和最大值;
(2)直線與關(guān)于原點(diǎn)對(duì)稱,且直線截曲線的弦長(zhǎng)等于,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,平面平面,四邊形為等腰梯形,四邊形為菱形.已知,,.
(1)線段上是否存在一點(diǎn),使得平面?證明你的結(jié)論.
(2)若線段在平面上的投影長(zhǎng)度為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象與直線有3個(gè)交點(diǎn),則實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com