【題目】已知函數(shù)f(x)=lnx﹣a(a∈R)與函數(shù) 有公共切線. (Ⅰ)求a的取值范圍;
(Ⅱ)若不等式xf(x)+e>2﹣a對于x>0的一切值恒成立,求a的取值范圍.
【答案】解:(Ⅰ) , . ∵函數(shù)f(x)與F(x)有公共切線,∴函數(shù)f(x)與F(x)的圖象相切或無交點(diǎn).
當(dāng)兩函數(shù)圖象相切時(shí),設(shè)切點(diǎn)的橫坐標(biāo)為x0(x0>0),則 ,
解得x0=2或x0=﹣1(舍去),
則f(2)=F(2),得a=ln2﹣3,
由此求出a≥ln2﹣3,即a的取值范圍為[ln2﹣3,+∞).
(Ⅱ)等價(jià)于xlnx+a+e﹣2﹣ax≥0在x∈(0,+∞)上恒成立,
令g(x)=xlnx+a+e﹣2﹣ax,
因?yàn)間'(x)=lnx+1﹣a,令g'(x)=0,得 ,
x |
|
|
|
g'(x) | ﹣ | 0 | + |
g(x) | 極小值 |
所以g(x)的最小值為 ,
令 ,因?yàn)? ,
令t'(x)=0,得x=1,且
x | (0,1) | 1 | (1,+∞) |
t'(x) | + | 0 | ﹣ |
t(x) | 極大值 |
所以當(dāng)a∈(0,1)時(shí),g(x)的最小值 ,
當(dāng)a∈[1,+∞)時(shí),g(x)的最小值為 =t(2),
所以a∈[1,2].
綜上得a的取值范圍為(0,2]
【解析】.(Ⅰ) , .由函數(shù)f(x)與F(x)有公共切線,知函數(shù)f(x)與F(x)的圖象相切或無交點(diǎn).由此能求出a的取值范圍(Ⅱ)等價(jià)于xlnx+a+e﹣2﹣ax≥0在x∈(0,+∞)上恒成立,令g(x)=xlnx+a+e﹣2﹣ax,g'(x)=lnx+1﹣a,令g'(x)=0,得 ,從而求出g(x)的最小值,令 ,由 =0,得x=1,由此能求出a的取值范圍.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos x的圖象向右平移π個(gè)單位得到函數(shù)y=g(x)的圖象,則g( )=( )
A.
B.
C.﹣
D.﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】抽樣統(tǒng)計(jì)甲、乙兩名學(xué)生的5次訓(xùn)練成績(單位:分),結(jié)果如下:
學(xué)生 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
甲 | 65 | 80 | 70 | 85 | 75 |
乙 | 80 | 70 | 75 | 80 | 70 |
則成績較為穩(wěn)定(方差較小)的那位學(xué)生成績的方差為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的函數(shù),其導(dǎo)函數(shù)為f′(x)﹣f(x)>1,f(0)=2016,則不等式f(x)>2017ex﹣1(其中e為自然對數(shù)的底數(shù))的解集為( )
A.(﹣∞,0)∪(0,+∞)
B.(2017,+∞)
C.(0,+∞)
D.(0,+∞)∪(2017,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),若g(x)=f(x+1)+5,g′(x)為g(x)的導(dǎo)函數(shù),對x∈R,總有g(shù)′(x)>2x,則g(x)<x2+4的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=( x3﹣x2+ )cos2017( + )+2x+3在[﹣2015,2017]上的最大值為M,最小值為m,則M+m=( )
A.5
B.10
C.1
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,若存在唯一的正整數(shù)x0 , 使得f(x0)≥0,則實(shí)數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|﹣1≤x+1≤6},B={x|m﹣1≤x<2m+1}.
(1)當(dāng)x∈Z,求A的真子集的個(gè)數(shù)?
(2)若BA,求實(shí)數(shù)m的取值范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣2)lnx﹣ax+1.
(1)若f(x)在區(qū)間(1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)若存在唯一整數(shù)x0 , 使得f(x0)<0成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com