【題目】已知角始邊與軸的非負半軸重合,與圓相交于點,終邊與圓相交于點,點軸上的射影為, 的面積為,函數(shù)的圖象大致是( )

A. B.

C. D.

【答案】B

【解析】如圖A(2,0),在RT△BOC中,


|BC|=2|sinx|,|OC|=2|cosx|,
∴△ABC的面積為S(x)= |BC||AC|≥0,
所以排除C、D;
選項A、B的區(qū)別是△ABC的面積為S(x)何時取到最大值?
下面結合選項A、B中的圖象利用特值驗證
x=時,△ABC的面積為S(x)=×2×2=2,
x=時,|BC|=2|sin|= ,|OC|=2|cos|=|AC|=2+∴△ABC的面積為S(x)=×× =+1>2,
綜上可知,答案B的圖象正確,
故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)設函數(shù),試討論函數(shù)零點的個數(shù);

(2)若,,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 (常數(shù)a,b>0,且a>b)的左、右焦點分別為F1,F2,M,N為短軸的兩個端點,且四邊形F1MF2N是面積為4的正方形.

(1)求橢圓的方程;

(2)過原點且斜率分別為k和-k(k≥2)的兩條直線與橢圓的交點為A、BC、D(按逆時針順序排列,且點A位于第一象限內),求四邊形ABCD的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是等差數(shù)列,滿足,數(shù)列滿足, ,且是等比數(shù)列.

1)求數(shù)列的通項公式;

2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求函數(shù)的單調區(qū)間.

(2)當時,不等式上恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,半徑為2的圓內有兩條圓弧,一質點M自點A開始沿弧A-B-C-O-A-D-C做勻速運動,則其在水平方向(向右為正)的速度的圖像大致為( )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】通過隨機詢問110名大學生是否愛好某項運動,得到列聯(lián)表:

總計

愛好

40

20

60

不愛好

20

30

50

總計

60

50

110

K2,得K2≈7.8.

附表:

P(K2k0)

0.050

0.010

0.001

k0

3.841

6.635

10.828

參照附表,得到的正確結論是(  )

A. 有99%以上的把握認為“愛好該項運動與性別有關”

B. 有99%以上的把握認為“愛好該項運動與性別無關”

C. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”

D. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲乙丙三輛汽車在不同速度下的燃油效率情況,下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時的速度1小時,消耗10升汽油

D. 某城市機動車最高限速80千米/小時,相同條件下,在該市用丙車比乙車更省油.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù))與軸有唯一的公關點

(Ⅰ)求函數(shù)的單調區(qū)間

(Ⅱ)曲線在點處的切線斜率為若存在不相等的正實數(shù),滿足,證明

查看答案和解析>>

同步練習冊答案