【題目】已知函數(shù),.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間和極值;
(2)若對于任意,都有成立,求實數(shù)的取值范圍;
(3)若,且,證明:.
【答案】(1)答案見解析;(2);(3)證明見解析.
【解析】試題分析:(1)由題意x>0,由此根據(jù)k≤0,k>0利用導(dǎo)數(shù)性質(zhì)分類討論,能求出函數(shù)f(x)的單調(diào)區(qū)間和極值.
(2)問題轉(zhuǎn)化為,對于x∈[e,e2]恒成立,令,則,令,由此利用導(dǎo)數(shù)性質(zhì)能求出實數(shù)k的取值范圍.
(3)設(shè),則,要證,只要證,即證,由此利用導(dǎo)數(shù)性質(zhì)能證明.
試題解析:
(1),
①時,因為,所以,
函數(shù)的單調(diào)遞增區(qū)間是,無單調(diào)遞減區(qū)間,無極值;
②當(dāng)時,令,解得,
當(dāng)時,;當(dāng),.
所以函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,
在區(qū)間上的極小值為,無極大值.
(2)由題意,,
即問題轉(zhuǎn)化為對于恒成立,
即對于恒成立,
令,則,
令,則,
所以在區(qū)間上單調(diào)遞增,故,故,
所以在區(qū)間上單調(diào)遞增,函數(shù).
要使對于恒成立,只要,
所以,即實數(shù)k的取值范圍為.
(3)證法1 因為,由(1)知,函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,且.
不妨設(shè),則,
要證,只要證,即證.
因為在區(qū)間上單調(diào)遞增,所以,
又,即證,
構(gòu)造函數(shù),
即,.
,
因為,所以,即,
所以函數(shù)在區(qū)間上單調(diào)遞增,故,
而,故,
所,即,所以成立.
證法2 要證成立,只要證:.
因為,且,所以,
即,,
即,
,同理,
從而,
要證,只要證,
令不妨設(shè),則,
即證,即證,
即證對恒成立,
設(shè),,
所以在單調(diào)遞增,,得證,所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生喜歡校內(nèi)、校外開展活動的情況,某中學(xué)一課外活動小組在學(xué)校高一年級進行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學(xué)生的問卷成績(單位:分)進行統(tǒng)計,將數(shù)據(jù)按,,,,分成五組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為類學(xué)生,低于60分的稱為類學(xué)生.
(1)根據(jù)已知條件完成下面列聯(lián)表,能否在犯錯誤的概率不超過的前提下認為性別與是否為類學(xué)生有關(guān)系?
類 | 類 | 合計 | |
男 | 110 | ||
女 | 50 | ||
合計 |
(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中類學(xué)生的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.
參考公式:,其中.
參考臨界值:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(1-2x)(x2-2).
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若直線y=4x+b是函數(shù)y=f(x)圖象的一條切線,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:
①若,滿足,則的最大值為4;
②若,則函數(shù)的最小值為3;
③若,滿足,則的最大值為;
④若,滿足,則的最小值為2;
⑤函數(shù)的最小值為9.
正確的有________.(把你認為正確的序號全部寫上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的通項為an=log(n+1)(n+2)(n∈N*),我們把使乘積a1a2a3…an為整數(shù)的n叫做“優(yōu)數(shù)”,則在(0,2015]內(nèi)的所有“優(yōu)數(shù)”的和為( 。
A.1024
B.2012
C.2026
D.2036
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知變量之間的線性回歸方程為,且變量之間的一組相關(guān)數(shù)據(jù)如表所示,則下列說法錯誤的是( 。
x | 6 | 8 | 10 | 12 |
y | 6 | m | 3 | 2 |
A. 變量之間呈現(xiàn)負相關(guān)關(guān)系
B. 的值等于5
C. 變量之間的相關(guān)系數(shù)
D. 由表格數(shù)據(jù)知,該回歸直線必過點(9,4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人們生活水平的不斷提高,家庭理財越來越引起人們的重視.某一調(diào)查機構(gòu)隨機調(diào)查了5個家庭的月收入與月理財支出(單位:元)的情況,如下表所示:
月收入(千元) | 8 | 10 | 9 | 7 | 11 |
月理財支出(千元) |
(I)在下面的坐標(biāo)系中畫出這5組數(shù)據(jù)的散點圖;
(II)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(III)根據(jù)(II)的結(jié)果,預(yù)測當(dāng)一個家庭的月收入為元時,月理財支出大約是多少元?
(附:回歸直線方程中,,.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax4lnx+bx4﹣c(x>0)在x=1處取得極值﹣3﹣c,其中a,b,c為常數(shù).
(1)試確定a,b的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量=(sin(A-B),2cosA)=(1,cos(-B)),且=-sin2C,其中A、B、C分別為△ABC的三邊a、b、c所對的角.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA+sinB=sinC,且 , 求c.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com