【題目】如圖,棱錐的地面是矩形, 平面,,.
(1)求證: 平面;
(2)求二面角的大小;
【答案】(1)詳見(jiàn)解析;(2)
【解析】
試題(1)利用空間向量證明線面垂直,即證平面的一個(gè)法向量為 ,先根據(jù)條件建立恰當(dāng)直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用向量數(shù)量積證明為平面的一個(gè)法向量,最后根據(jù)線面垂直判定定理得結(jié)論(2)利用空間向量求二面角,先利用解方程組的方法求出平面法向量,利用向量數(shù)量積求出兩法向量夾角,最后根據(jù)二面角與法向量夾角關(guān)系確定二面角大小
試題解析:證:(1)建立如圖所示的直角坐標(biāo)系,
則A(0,0,0)、D(0,2,0)、P(0,0,2).
在Rt△BAD中,AD=2,BD=,
∴AB=2.∴B(2,0,0)、C(2,2,0),
∴
∵,即BD⊥AP,BD⊥AC,又AP∩AC=A,∴BD⊥平面PAC.
(2)由(1)得.
設(shè)平面PCD的法向量為,則,
即,∴故平面PCD的法向量可取為
∵PA⊥平面ABCD,∴為平面ABCD的法向量.
設(shè)二面角P—CD—B的大小為q,依題意可得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C的對(duì)邊,若△ABC的周長(zhǎng)為2(+1),且sin B+sin C=sin A,則a= ( )
A. B. 2 C. 4 D.
【答案】B
【解析】
根據(jù)正弦定理把轉(zhuǎn)化為邊的關(guān)系,進(jìn)而根據(jù)△ABC的周長(zhǎng),聯(lián)立方程組,可求出a的值.
根據(jù)正弦定理,可化為
∵△ABC的周長(zhǎng)為,
∴聯(lián)立方程組,
解得a=2.
故選:B
【點(diǎn)睛】
(1)在三角形中根據(jù)已知條件求未知的邊或角時(shí),要靈活選擇正弦、余弦定理進(jìn)行邊角之間的轉(zhuǎn)化,以達(dá)到求解的目的.
(2)求角的大小時(shí),在得到角的某一個(gè)三角函數(shù)值后,還要根據(jù)角的范圍才能確定角的大小,這點(diǎn)容易被忽視,解題時(shí)要注意.
【題型】單選題
【結(jié)束】
7
【題目】已知數(shù)列{an}中,an=n2-kn(n∈N*),且{an}單調(diào)遞增,則k的取值范圍是( )
A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱(chēng)軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為2,且.
(1)求拋物線的方程;
(2)過(guò)點(diǎn)作直線交拋物線于,兩點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
直角坐標(biāo)系中曲線的參數(shù)方程(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中, 點(diǎn)的極坐標(biāo),在平面直角坐標(biāo)系中,直線經(jīng)過(guò)點(diǎn),傾斜角為
(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的參數(shù)方程;
(2)設(shè)直線與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的內(nèi)接等邊三角形的面積為(其中為坐標(biāo)原點(diǎn)).
(1)試求拋物線的方程;
(2)已知點(diǎn)兩點(diǎn)在拋物線上,是以點(diǎn)為直角頂點(diǎn)的直角三角形.
①求證:直線恒過(guò)定點(diǎn);
②過(guò)點(diǎn)作直線的垂線交于點(diǎn),試求點(diǎn)的軌跡方程,并說(shuō)明其軌跡是何種曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為: (為參數(shù), ),將曲線經(jīng)過(guò)伸縮變換: 得到曲線.
(1)以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,求的極坐標(biāo)方程;
(2)若直線(為參數(shù))與相交于兩點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(為參數(shù)),曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線l和曲線的極坐標(biāo)方程;
(2)曲線分別交直線和曲線于點(diǎn),求的最大值及相應(yīng)的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在處的切線方程;
(2)對(duì)于任意,恒成立,求的取值范圍;
(3)試討論函數(shù)的極值點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為,直線與拋物線交于,兩點(diǎn),過(guò)這兩點(diǎn)分別作拋物線的切線,且這兩條切線相交于點(diǎn).
(1)若點(diǎn)的坐標(biāo)為,求的值;
(2)設(shè)線段的中點(diǎn)為,過(guò)的直線與線段為直徑的圓相切,切點(diǎn)為,且直線與拋物線交于,兩點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com