【題目】設(shè)點(diǎn)是拋物線上的動點(diǎn),是的準(zhǔn)線上的動點(diǎn),直線過且與(為坐標(biāo)原點(diǎn))垂直,則點(diǎn)到的距離的最小值的取值范圍是( )
A. B. C. D.
【答案】B
【解析】
設(shè)出點(diǎn)坐標(biāo),表示出直線,將點(diǎn)到直線的距離轉(zhuǎn)化成,與直線平行且與拋物線相切的直線與直線間的距離.再找到其取值范圍.
拋物線的準(zhǔn)線方程是
若點(diǎn)的坐標(biāo)為,此時直線的方程為,
顯然點(diǎn)到直線的距離的最小值是1
若點(diǎn)的坐標(biāo)為,其中
則直線的斜率為
直線的斜率為
直線的方程為
即,
設(shè)與直線平行且與拋物線相切的直線方程為
代入拋物線方程得
所以
解得
所以與直線平行且與拋物線相切的直線方程為
所以點(diǎn)到直線的距離的最小值為直線與直線的距離,即
因?yàn)?/span>
所以
綜合兩種情況可知點(diǎn)到直線的距離的最小值的取值范圍是
所以選B項.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)若與交于兩點(diǎn),點(diǎn)的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】表面積為的球面上有四點(diǎn)S、A、B、C,且是等邊三角形,球心O到平面ABC的距離為1,若平面平面ABC,則三棱錐體積的最大值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對任意的實(shí)數(shù)都有(是自然對數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個整數(shù),則實(shí)數(shù)的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為,過橢圓的焦點(diǎn)且與長軸垂直的弦長為1.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M為橢圓上第一象限內(nèi)一動點(diǎn),A,B分別為橢圓的左頂點(diǎn)和下頂點(diǎn),直線MB與x軸交于點(diǎn)C,直線MA與y軸交于點(diǎn)D,求證:四邊形ABCD的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大城市往往人口密集,城市綠化在健康人民群眾肺方面發(fā)揮著非常重要的作用,歷史留給我們城市里的大山擁有品種繁多的綠色植物更是無價之寶.改革開放以來,有的地方領(lǐng)導(dǎo)片面追求政績,對森林資源野蠻開發(fā)受到嚴(yán)肅查處事件時有發(fā)生.2019年的春節(jié)后,廣西某市林業(yè)管理部門在“綠水青山就是金山銀山”理論的不斷指引下,積極從外地引進(jìn)甲、乙兩種樹苗,并對甲、乙兩種樹苗各抽測了10株樹苗的高度(單位:厘米),數(shù)據(jù)如下面的莖葉圖:
(1)據(jù)莖葉圖求甲、乙兩種樹苗的平均高度;
(2)據(jù)莖葉圖,運(yùn)用統(tǒng)計學(xué)知識分析比較甲、乙兩種樹苗高度整齊情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn).
(1)證明:面;
(2)證明:面面;
(3)求直線與面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,是的中點(diǎn).將沿折起,使折起后平面平面,則異面直線和所成角的余弦值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com