【題目】在直角坐標(biāo)系xOy中以O(shè)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系.圓C1 , 直線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρcos( )=2 .
(1)求C1與C2交點(diǎn)的極坐標(biāo);
(2)設(shè)P為C1的圓心,Q為C1與C2交點(diǎn)連線的中點(diǎn),已知直線PQ的參數(shù)方程為 (t∈R為參數(shù)),求a,b的值.
【答案】
(1)解:圓C1,直線C2的直角坐標(biāo)方程分別為 x2+(y﹣2)2=4,x+y﹣4=0,
解 得 或 ,
∴C1與C2交點(diǎn)的極坐標(biāo)為(4, ).(2 , ).
(2)解:由(1)得,P與Q點(diǎn)的坐標(biāo)分別為(0,2),(1,3),
故直線PQ的直角坐標(biāo)方程為x﹣y+2=0,
由參數(shù)方程可得y= x﹣ +1,
∴ ,
解得a=﹣1,b=2.
【解析】(1)先將圓C1 , 直線C2化成直角坐標(biāo)方程,再聯(lián)立方程組解出它們交點(diǎn)的直角坐標(biāo),最后化成極坐標(biāo)即可;(2)由(1)得,P與Q點(diǎn)的坐標(biāo)分別為(0,2),(1,3),從而直線PQ的直角坐標(biāo)方程為x﹣y+2=0,由參數(shù)方程可得y= x﹣ +1,從而構(gòu)造關(guān)于a,b的方程組,解得a,b的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線C1: 的焦點(diǎn)與雙曲線C2: 的右焦點(diǎn)的連線交C1于第一象限的點(diǎn)M.若C1在點(diǎn)M處的切線平行于C2的一條漸近線,則p=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個(gè)數(shù)有( )
①用刻畫回歸效果,當(dāng)越大時(shí),模型的擬合效果越差;反之,則越好;
②命題“,”的否定是“,”;
③若回歸直線的斜率估計(jì)值是,樣本點(diǎn)的中心為,則回歸直線方程是;
④綜合法證明數(shù)學(xué)問題是“由因索果”,分析法證明數(shù)學(xué)問題是“執(zhí)果索因”。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是某港口水的深度(單位:)關(guān)于時(shí)間的函數(shù),其中.下表是該港口某一天從時(shí)至時(shí)記錄的時(shí)間與水深的關(guān)系:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 |
經(jīng)長期觀察,函數(shù)的圖像可以近似看成函數(shù)的圖像.最能近似表示表中數(shù)據(jù)間對應(yīng)關(guān)系的函數(shù)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的底面與正四面體的底面在同一平面α上,且AB∥CD,正方體的六個(gè)面所在的平面與直線CE,EF相交的平面?zhèn)數(shù)分別記為m,n,那么m+n=( )
A.8
B.9
C.10
D.11
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動(dòng)圓M與定圓C:x2+y2+4x=0相外切,且與直線l:x-2=0相切,則動(dòng)圓M的圓心的軌跡方程為( )
A. y2-12x+12=0 B. y2+12x-12=0
C. y2+8x=0 D. y2-8x=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為 (其中為參數(shù)).現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;(2)求直線被曲線截得的線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ln(x+m)
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com