(本小題共12分)已知函數(shù)的 部 分 圖 象如 圖 所示.
(I)求 函 數(shù)的 解 析 式;
(II)在△中,角的 對 邊 分 別 是,若的 取 值 范 圍.
(1) ;(2)。
【解析】題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,考查分析問題解決問題的能力,解題的關(guān)鍵是初相的求法要注意,本題是基礎(chǔ)題.
(1)由圖形可以求出A,T,根據(jù)周期解出ω,根據(jù)圖象過(1,2),把這個點(diǎn)的坐標(biāo)代入以及φ的范圍求出φ,可得函數(shù)解析式.
(2)由得
所以,進(jìn)而得到,結(jié)合三角函數(shù)的性質(zhì)得到結(jié)論。
(1)由圖像知,的最小正周期,故 …(2分)
將點(diǎn)代入的解析式得,又
故 所以 ……………… 4分
(2)由得
所以……………………6分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012102513140575006215/SYS201210251315096562722551_DA.files/image015.png"> 所以 ………………8分
……………………10分
……………………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013屆甘肅省高三第二次檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題共12分)
已知函數(shù)f(x)=2x--aln(x+1),a∈R.(1)若a=-4,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求y=f(x)的極值點(diǎn)(即函數(shù)取到極值時(shí)點(diǎn)的橫坐標(biāo)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年內(nèi)蒙古呼倫貝爾市高三第四次模擬考試文科數(shù)學(xué)試卷 題型:解答題
(本小題共12分)已知曲線上任意一點(diǎn)P到兩個定點(diǎn)F1(-,0)和F2(,0)的距離之和為4.
(1)求曲線的方程;
(2)設(shè)過(0,-2)的直線與曲線交于C、D兩點(diǎn),且為坐標(biāo)原點(diǎn)),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題共12分)
已知函數(shù)
(Ⅰ)求的最小正周期和最小值;
(Ⅱ)已知,,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
(本小題共12分)
已知函數(shù)的最小值不小于, 且.
(1)求函數(shù)的解析式;
(2)函數(shù)在的最小值為實(shí)數(shù)的函數(shù),求函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
(本小題共12分)
已知集合,集合
(1)求集合A;
(2)若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com