【題目】如圖F1、F2是橢圓C1+y2=1與雙曲線C2的公共焦點(diǎn),A、B分別是C1、C2在第二、四象限的公共點(diǎn),若四邊形AF1BF2為矩形,則C2的離心率是
( 。

A.
B.
C.
D.

【答案】D
【解析】解:設(shè)|AF1|=x,|AF2|=y,∵點(diǎn)A為橢圓C1+y2=1上的點(diǎn),
∴2a=4,b=1,c=;
∴|AF1|+|AF2|=2a=4,即x+y=4;①
又四邊形AF1BF2為矩形,
即x2+y2=(2c)2=(2)2=12,②
由①②得:,解得x=2﹣ , y=2+ , 設(shè)雙曲線C2的實(shí)軸長(zhǎng)為2m,焦距為2n,
則2m=|AF2|﹣|AF1|=y﹣x=2 , 2n=2c=2
∴雙曲線C2的離心率e=
故選D.
不妨設(shè)|AF1|=x,|AF2|=y,依題意,解此方程組可求得x,y的值,利用雙曲線的定義及性質(zhì)即可求得C2的離心率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時(shí),求曲線處的切線方程;

(Ⅱ)當(dāng)時(shí),求證:函數(shù)處取得最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,且離心率為

1)求橢圓方程;

2)斜率為的直線過點(diǎn),且與橢圓交于兩點(diǎn), 為直線上的一點(diǎn),若為等邊三角形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= +lg 的定義域?yàn)椋?/span>
A.(2,3)
B.(2,4]
C.(2,3)∪(3,4]
D.(﹣1,3)∪(3,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)(0,-),(0,)的距離之和等于4,設(shè)點(diǎn)P的軌跡為C.
(1)寫出C的方程;
(2)設(shè)直線y=kx+1與C交于A、B兩點(diǎn),k為何值時(shí)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求曲線在點(diǎn)處的切線方程和函數(shù)的極值:

(2)若對(duì)任意,都有成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別是△ABC內(nèi)角A,B,C的對(duì)邊,sin2B=2sinAsinC.
(Ⅰ)若a=b,求cosB;
(Ⅱ)設(shè)B=90°,且a= , 求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ,求| |
(2)若 夾角為銳角,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案