【題目】已知函數f(x)=|2x+ |+a|x﹣ |.
(Ⅰ)當a=﹣1時,解不等式f(x)≤3x;
(Ⅱ)當a=2時,若關于x的不等式2f(x)+1<|1﹣b|的解集為空集,求實數b的取值范圍.
【答案】(1) (2)[﹣7,9]
【解析】試題分析:
(1)零點分段可得不等式的解集為;
(2)利用絕對值不等式的性質,原問題轉化為|1﹣b|≤8恒成立,據此可得實數b的取值范圍是[﹣7,9].
試題解析:
解:(Ⅰ)當a=﹣1時,不等式f(x)=|2x+|﹣|x﹣|≤3x,
等價于①;或②;或.
解①求得﹣≤x<﹣,解②求得﹣≤x<,解③求得x≥,
故原不等式的解集為{x|x≥﹣}.
(Ⅱ)當a=2時,若關于x的不等式2f(x)+1<|1﹣b|,即 2(|2x+|+2|x﹣|)+1<|1﹣b|,
即|4x+1|+|4x﹣6|+1<|1﹣b|.
由于|4x+1|+|4x﹣6|≥|(4x+1)﹣(4x﹣6)|=7,∴|1﹣b|>7+1的解集為,即|1﹣b|≤8恒成立,
∴﹣8≤b﹣1≤8,即﹣7≤b≤9,即要求的實數b的取值范圍為[﹣7,9].
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC A1B1C1中,D,E分別為AB,BC的中點,點F在側棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.
(1) 求證:直線DE∥平面A1C1F;
(2) 求證:平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某集團公司為了獲得更大的收益,決定以后每年投入一筆資金用于廣告促銷.經過市場調查,每年投入廣告費t百萬元,可增加銷售額約(2t+ ﹣ )百萬元(t≥0).
(1)若公司當年新增收益不少于1.5百萬元,求每年投放廣告費至少多少百萬元?
(2)現公司準備投入6百萬元分別用于當年廣告費和新產品開發(fā),經預測,每投入新產品開發(fā)費x百萬元,可增加銷售額約( +3x+ )百萬元,問如何分配這筆資金,使該公司獲得新增收益最大?(新增收益=新增銷售額﹣投入)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數, .
(Ⅰ)若直線 與曲線和分別交于兩點.設曲線
在點處的切線為, 在點處的切線為.
(。┊時,若 ,求的值;
(ⅱ)若,求的最大值;
(Ⅱ)設函數在其定義域內恰有兩個不同的極值點, ,且.
若,且恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b,c分別是△ABC的三個內角A,B,C所對的邊,且滿足(2b﹣a)cosC=ccosA.
(Ⅰ)求角C的大;
(Ⅱ)設,求y的最大值并判斷當y取得最大值時△ABC的形狀.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學數學老師分別用兩種不同教學方式對入學數學平均分和優(yōu)秀率都相同的甲、乙兩個高一新班(人數均為 人)進行教學(兩班的學生學習數學勤奮程度和自覺性一致),數學期終考試成績莖葉圖如下:
(1)現從乙班數學成績不低于 分的同學中隨機抽取兩名同學,求至少有一名成績?yōu)?/span> 分的同學被抽中的概率;
(2)學校規(guī)定:成績不低于 分的優(yōu)秀,請?zhí)顚懴旅娴?/span>聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關”.
附:參考公式及數據
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為大力提倡“厲行節(jié)儉,反對浪費”,某高中通過隨機詢問100名性別不同的學生是否做到“光盤”行動,得到如表所示聯(lián)表及附表:
做不到“光盤”行動 | 做到“光盤”行動 | |
男 | 45 | 10 |
女 | 30 | 15 |
P(K2≥k0) | 0.10 | 0.05 | 0.025 |
k0 | 2.706 | 3.841 | 5.024 |
經計算:K2= ≈3.03,參考附表,得到的正確結論是( )
A.有95%的把握認為“該學生能否做到光盤行到與性別有關”
B.有95%的把握認為“該學生能否做到光盤行到與性別無關”
C.有90%的把握認為“該學生能否做到光盤行到與性別有關”
D.有90%的把握認為“該學生能否做到光盤行到與性別無關”
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com