設(shè)函數(shù),曲線在點(diǎn)處的切線方程為,則曲線在點(diǎn)處切線的斜率為       
4

試題分析:先根據(jù)曲線y=g(x)在點(diǎn)(1,g(1))處的切線方程為y=2x+1,可得g′(1)=2,再利用函數(shù)f(x)=g(x)+x2,可知f′(x)=g′(x)+2x,從而可求曲線y=f(x)在點(diǎn)(1,f(1))處切線的斜率.解:由題意,∵曲線y=g(x)在點(diǎn)(1,g(1))處的切線方程為y=2x+1,∴g′(1)=2,∵函數(shù)f(x)=g(x)+x2,∴f′(x)=g′(x)+2x∴f′(1)=g′(1)+2∴f′(1)=2+2=4∴曲線y=f(x)在點(diǎn)(1,f(1))處切線的斜率為4,故答案為:4
點(diǎn)評:本題考查的重點(diǎn)是曲線在點(diǎn)處切線的斜率,解題的關(guān)鍵是利用導(dǎo)數(shù)的幾何意義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)P、Q分別為函數(shù)y=ln(x—1)+1和y=+1圖像上的動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)1PQ1最小時(shí),直線OQ交函數(shù)y=+1的圖像于點(diǎn)R(,)(異于Q點(diǎn)),則
A.B.C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點(diǎn)P在曲線上移動(dòng),經(jīng)過點(diǎn)P的切線的傾斜角為,則角的取值范圍是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)在區(qū)間上不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是偶函數(shù),若曲線在點(diǎn)處的切線的斜率為1,則該曲線在點(diǎn)處的切線的斜率為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)= ,g(x)=3lnx,其中a>0。若兩曲線y=f(x),y=g(x)有公共點(diǎn),且在該點(diǎn)處的切線相同。則a的值為         。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知的最小值為,則二項(xiàng)式的展開式中的常數(shù)項(xiàng)是           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,則等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè),且,則         。

查看答案和解析>>

同步練習(xí)冊答案