【題目】為選拔參加“全市高中數(shù)學(xué)競賽”的選手,某中學(xué)舉行了一次“數(shù)學(xué)競賽”活動.為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計.按照的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

(1)求樣本容和頻率分布直方圖中的值并求出抽取學(xué)生的平均分;

(2)在選取的樣本中,從競賽成績在分以上(含)的學(xué)生中隨機(jī)抽取名學(xué)生參加“全市中數(shù)學(xué)競賽”求所抽取的名學(xué)生中至少有一人得分在內(nèi)的概率.

【答案】(1) ;(2) .

【解析】試題分析:(1)由樣本容量和頻數(shù)頻率的關(guān)系易得答案;(2)由題意可知,分?jǐn)?shù)在內(nèi)的學(xué)生有3人,分?jǐn)?shù)在內(nèi)的學(xué)生有2人,抽取的2名學(xué)生的所有情況有種,其中2名同學(xué)的分?jǐn)?shù)至少有一名得分在內(nèi)的情況有7種,即可求所抽取的2名學(xué)生中至少有一人得分在內(nèi)的概率.

試題解析:(1)由題意可知,樣本容量 .

(2)由題意可知,分?jǐn)?shù)在內(nèi)的學(xué)生有 人,分?jǐn)?shù)在 內(nèi)的學(xué)生有 人,抽取的 名學(xué)生的所有情況有 種, 其中 名同學(xué)的分?jǐn)?shù)至少有一名得分在 內(nèi)的情況有 種,∴所抽取的 名學(xué)生中至少有一人得分在內(nèi)的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“奶茶妹妹”對某時間段的奶茶銷售量及其價格進(jìn)行調(diào)查,統(tǒng)計出售價元和銷售量杯之間的一組數(shù)據(jù)如下表所示:

價格

5

5.5

6.5

7

銷售量

12

10

6

4

通過分析,發(fā)現(xiàn)銷售量對奶茶的價格具有線性相關(guān)關(guān)系.

(Ⅰ)求銷售量對奶茶的價格的回歸直線方程;

(Ⅱ)欲使銷售量為杯,則價格應(yīng)定為多少?

附:線性回歸方程為,其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是底面邊長為2,高為的正三棱柱,經(jīng)過AB的截面與上底面相交于PQ, 設(shè).

證明:

當(dāng)時,求點(diǎn)C到平面APQB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商店計劃每天購進(jìn)某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時每件調(diào)劑商品可獲利30元.

若商店一天購進(jìn)該商品10件,求當(dāng)天的利潤y單位:元關(guān)于當(dāng)天需求量n單位:件,n∈N的函數(shù)解析式;

商店記錄了50天該商品的日需求量單位:件,整理得下表:

日需求量n

8

9

10

11

12

頻數(shù)

10

10

15

10

5

假設(shè)該店在這50天內(nèi)每天購進(jìn)10件該商品,求這50天的日利潤單位:元的平均數(shù);

若該店一天購進(jìn)10件該商品,記“當(dāng)天的利潤在區(qū)間”為事件A,求PA的估計值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)求函數(shù)的單調(diào)區(qū)間;

)求證:;

曲線上的所有點(diǎn)都落在圓內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分13分)已知橢圓C的中心在坐標(biāo)原點(diǎn),離心率,且其中一個焦點(diǎn)與拋物線的焦點(diǎn)重合.(Ⅰ)求橢圓C的方程;(Ⅱ)過點(diǎn)的動直線l交橢圓CA、B兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個定點(diǎn)T,使得無論l如何轉(zhuǎn)動,以AB為直徑的圓恒過點(diǎn)T,若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且.

(1)求數(shù)列的通項(xiàng)公式,并寫出推理過程;

(2)令,,試比較的大小,并給出你的證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(1,a),圓x2y2=4.

(1)若過點(diǎn)A的圓的切線只有一條,求a的值及切線方程;

(2)若過點(diǎn)A且在兩坐標(biāo)軸上截距相等的直線被圓截得的弦長為,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有兩個不透明的箱子,每個箱子都裝有4個完全相同的小球,球上分別標(biāo)有數(shù)字1,2,3,4.

(1)甲從其中一個箱子中摸出一個球,乙從另一個箱子摸出一個球,誰摸出的球上標(biāo)的數(shù)字大誰就獲勝(若數(shù)字相同則為平局),求甲獲勝的概率;

(2)摸球方法與(1)同,若規(guī)定:兩人摸到的球上所標(biāo)數(shù)字相同甲獲勝,所標(biāo)數(shù)字不相同則乙獲勝,這樣規(guī)定公平嗎?請說明理由。

查看答案和解析>>

同步練習(xí)冊答案