【題目】某學校參加某項競賽僅有一個名額,結(jié)合平時訓練成績,甲、乙兩名學生進入最后選拔,學校為此設計了如下選拔方案:設計6道測試題,若這6道題中,甲能正確解答其中的4道,乙能正確解答每個題目的概率均為.假設甲、乙兩名學生解答每道測試題都相互獨立,互不影響,現(xiàn)甲、乙從這6道測試題中分別隨機抽取3題進行解答.
(1)求甲、乙兩名學生共答對2道測試題的概率;
(2)從數(shù)學期望和方差的角度分析,應選拔哪個學生代表學校參加競賽?
【答案】(1) .
(2) 應選拔甲學生代表學校參加競賽.
【解析】分析:(1)利用互斥事件概率加法公式、n次獨立重復試驗中事件A恰好發(fā)生k次概率計算公式能求出甲、乙兩名學生共答對2個問題的概率;
(2)設學生甲答對的題數(shù)為X,則X的所有可能取值為1,2,3,分別求出相應的概率,從而求出E(X),D(X)=X),設學生乙答對題數(shù)為Y,則Y所有可能的取值為0,1,2,3,由題意知Y~B(3,),從而求出E(Y),D(X),由E(X)=E(Y),D(X)<D(Y),得到甲代表學校參加競賽的可能性更大.
詳解:(1)依題設記甲、乙兩名學生共答對2道測試題的概率為P,
則.
(2)設學生甲答對的題數(shù)為,則的所有可能取值為1,2,3.
, , .
X | 1 | 2 | 3 |
P |
的分布列為:
所以,.
設學生乙答對的題數(shù)為,則的所有可能取值為0,1,2,3.則.
所以,.
因為,,即甲、乙答對的題目數(shù)一樣,但甲較穩(wěn)定,
所以應選拔甲學生代表學校參加競賽.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的參數(shù)方程是 (t是參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.曲線C的極坐標方程為ρ=4cos(θ+ ).
(1)判斷直線l與曲線C的位置關系;
(2)過直線l上的點作曲線C的切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知點M的極坐標為 ,圓C的參數(shù)方程為 (α為參數(shù)).
(1)直線l過M且與圓C相切,求直線l的極坐標方程;
(2)過點P(0,m)且斜率為 的直線l'與圓C交于A,B兩點,若|PA||PB|=6,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經(jīng)過兩點,且圓心在直線上.
(1)求圓的方程;
(2)已知過點的直線與圓相交截得的弦長為,求直線的方程;
(3)已知點,在平面內(nèi)是否存在異于點的定點,對于圓上的任意動點,都有為定值?若存在求出定點的坐標,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(Ⅰ)已知函數(shù)f(x)=|2x﹣3|﹣2|x|,若關于x不等式f(x)≤|a+2|+2a恒成立,求實數(shù)a的取值范圍; (Ⅱ)已知正數(shù)x,y,z滿足2x+y+z=1,求證 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:①命題“若,則”的逆否命題為假命題:
②命題“若,則”的否命題是“若,則”;
③若“”為真命題,“”為假命題,則為真命題,為假命題;
④函數(shù)有極值的充要條件是或 .
其中正確的個數(shù)有( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,棱長為1(單位:)的正方體木塊經(jīng)過適當切割,得到幾何體,已知幾何體由兩個底面相同的正四棱錐組成,底面平行于正方體的下底面,且各頂點均在正方體的面上,則幾何體體積的取值范圍是________(單位:).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),直線與曲線:交于,兩點.
(Ⅰ)求的長;
(Ⅱ)在以為極點,軸的正半軸為極軸建立的極坐標系中,設點的極坐標為,求點到線段中點的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com