【題目】四棱錐PABCD中,ABCDABBC,ABBC1PACD2,PA⊥底面ABCD,EPB.

1)證明:ACPD

2)若PE2BE,求三棱錐PACE的體積.

【答案】1)證明見解析;(2

【解析】

1)過(guò)AAFDCF,推導(dǎo)出ACDA,ACPA,從而AC⊥平面PAD,由此能求出ACPD

2)由VPACEVPABCVEABC,能求出三棱錐PACE的體積.

1)過(guò)AAFDCF

因?yàn)?/span>ABCD,ABBC,ABBC1,所以CFDFAF1,

所以∠DAC90°,所以ACDA

PA⊥底面ABCD,AC平面ABCD,所以ACPA,

PA,AD平面PADPAADA,所以AC⊥平面PAD

PD平面PAD,∴ACPD.

2)由PE2BE,可得VPACEVPABCVEABC,

所以,,

所以三棱錐PACE的體積VPACEVPABCVEABC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐,是等邊三角形,,,,的中點(diǎn).

)證明:直線平面

)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】蜂巢是由工蜂分泌蜂蠟建成的.從正面看,蜂巢口是由許多正六邊形的中空柱狀體連接而成,中空柱狀體的底部是由三個(gè)全等的菱形面構(gòu)成.如圖,在正六棱柱的三個(gè)頂點(diǎn)處分別用平面,平面,平面截掉三個(gè)相等的三棱錐,平面,平面,平面交于點(diǎn),就形成了蜂巢的結(jié)構(gòu),如下圖(4)所示,

瑞士數(shù)學(xué)家克尼格利用微積分的方法證明了蜂巢的這種結(jié)構(gòu)是在相同容積下所用材料最省的,英國(guó)數(shù)學(xué)家麥克勞林通過(guò)計(jì)算得到菱形的一個(gè)內(nèi)角為,即.以下三個(gè)結(jié)論①;② ;③四點(diǎn)共面,正確命題的個(gè)數(shù)為______個(gè);若,,,則此蜂巢的表面積為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】區(qū)塊鏈技術(shù)被認(rèn)為是繼蒸汽機(jī)、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術(shù)區(qū)塊鏈作為構(gòu)造信任的機(jī)器,將可能徹底改變整個(gè)人類社會(huì)價(jià)值傳遞的方式,2015年至2019年五年期間,中國(guó)的區(qū)塊鏈企業(yè)數(shù)量逐年增長(zhǎng),居世界前列現(xiàn)收集我國(guó)近5年區(qū)塊鏈企業(yè)總數(shù)量相關(guān)數(shù)據(jù),如表

年份

2015

2016

2017

2018

2019

編號(hào)

1

2

3

4

5

企業(yè)總數(shù)量y(單位:千個(gè))

2.156

3.727

8.305

24.279

36.224

注:參考數(shù)據(jù)(其中zlny).

附:樣本(xi,yi)(i1,2,n)的最小二乘法估計(jì)公式為

1)根據(jù)表中數(shù)據(jù)判斷,ya+bxycedx(其中e2.71828…,為自然對(duì)數(shù)的底數(shù)),哪一個(gè)回歸方程類型適宜預(yù)測(cè)未來(lái)幾年我國(guó)區(qū)塊鏈企業(yè)總數(shù)量?(給出結(jié)果即可,不必說(shuō)明理由)

2)根據(jù)(1)的結(jié)果,求y關(guān)于x的回歸方程(結(jié)果精確到小數(shù)點(diǎn)后第三位);

3)為了促進(jìn)公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進(jìn)行一次信息化技術(shù)比賽,邀請(qǐng)甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場(chǎng)比賽有兩個(gè)公司參加,并決出勝負(fù);②每場(chǎng)比賽獲勝的公司與未參加此場(chǎng)比賽的公司進(jìn)行下一場(chǎng)的比賽;③在比賽中,若有一個(gè)公司首先獲勝兩場(chǎng),則本次比賽結(jié)束,該公司就獲得此次信息化比賽的優(yōu)勝公司,已知在每場(chǎng)比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,請(qǐng)通過(guò)計(jì)算說(shuō)明,哪兩個(gè)公司進(jìn)行首場(chǎng)比賽時(shí),甲公司獲得優(yōu)勝公司的概率最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子中有四張卡片,分別寫有“國(guó)”、“富”、“民”、“強(qiáng)”四個(gè)字,有放回地從中任取一張卡片,將三次抽取后“國(guó)”“富”兩個(gè)字都取到記為事件A,用隨機(jī)模擬的方法估計(jì)事件A發(fā)生的概率,利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,23四個(gè)隨機(jī)數(shù),分別代表“國(guó)”、“富”、“民”、“強(qiáng)”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

231

232

210

023

122

021

321

220

031

231

103

133

132

001

320

123

130

233

由此可以估計(jì)事件A發(fā)生的概率為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面為正方形,,為等邊三角形,線段的中點(diǎn)為,若,則此四棱錐的外接球的表面積為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐P-ABCD的底面是正方形,底面ABCD,E是側(cè)棱的中點(diǎn).

1)求異面直線AEPD所成的角;

2)求點(diǎn)B到平面ECD的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,側(cè)面PAD是等邊三角形,且平面平面ABCD,,.

1AD上是否存在一點(diǎn)M,使得平面平面ABCD;若存在,請(qǐng)證明,若不存在,請(qǐng)說(shuō)明理由;

2)若的面積為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形是邊長(zhǎng)為5的菱形,對(duì)角線(如圖1),現(xiàn)以為折痕將菱形折起,使點(diǎn)達(dá)到點(diǎn)的位置.的中點(diǎn)分為,,且四面體的外接球球心落在四面體內(nèi)部(如圖2),則線段長(zhǎng)度的取值范圍為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案