【題目】中,角,,的對(duì)邊分別為,,,已知.

1)若,的面積為,求,的值;

2)若,且角為鈍角,求實(shí)數(shù)的取值范圍.

【答案】(1),(2)

【解析】

先由正弦定理和三角恒等變換,同角的三角函數(shù)基本關(guān)系求出cosA、sinA的值;

1)利用余弦定理和三角形的面積公式列出方程組,求出b、c的值;

2)利用正弦定理和余弦定理,結(jié)合角為鈍角,求出k的取值范圍.

ABC中,4acosAccosB+bcosC,

4sinAcosAsinCcosB+sinBcosCsinC+B)=sinA

cosA,

sinA

1a4,

a2b2+c22bccosAb2+c2bc16①;

又△ABC的面積為:

SABCbcsinAbc,

bc8②;

由①②組成方程組,解得b4,c2b2,c4;

2)當(dāng)sinBksinCk0),bkc

a2b2+c22bccosA=(kc2+c22kcck2k+1c2;

C為鈍角,則a2+b2c2

即(k2k+1+k21,解得0k;

所以k的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,準(zhǔn)線方程為,直線過定點(diǎn))且與拋物線交于、兩點(diǎn),為坐標(biāo)原點(diǎn).

1)求拋物線的方程;

2是否為定值,若是,求出這個(gè)定值;若不是,請(qǐng)說明理由;

3)當(dāng)時(shí),設(shè),記,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,,,過點(diǎn)的直線與橢圓相交于點(diǎn)A,B兩點(diǎn),且

1)若,求橢圓的方程;

2)直線AB的斜率;

3)設(shè)點(diǎn)C與點(diǎn)A關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,直線上有一點(diǎn)的外接圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種零件的質(zhì)量指標(biāo)值為整數(shù),指標(biāo)值為8時(shí)稱為合格品,指標(biāo)值為7或者9時(shí)稱為準(zhǔn)合格品,指標(biāo)值為610時(shí)稱為廢品,某單位擁有一臺(tái)制造該零件的機(jī)器,為了了解機(jī)器性能,隨機(jī)抽取了該機(jī)器制造的100個(gè)零件,不同的質(zhì)量指標(biāo)值對(duì)應(yīng)的零件個(gè)數(shù)如下表所示;

質(zhì)量指標(biāo)值

6

7

8

9

10

零件個(gè)數(shù)

6

18

60

12

4

使用該機(jī)器制造的一個(gè)零件成本為5元,合格品可以以每個(gè)元的價(jià)格出售給批發(fā)商,準(zhǔn)合格品與廢品無法岀售.

1)估計(jì)該機(jī)器制造零件的質(zhì)量指標(biāo)值的平均數(shù);

2)若該單位接到一張訂單,需要該零件2100個(gè),為使此次交易獲利達(dá)到1400元,估計(jì)的最小值;

3)該單位引進(jìn)了一臺(tái)加工設(shè)備,每個(gè)零件花費(fèi)2元可以被加工一次,加工結(jié)果會(huì)等可能出現(xiàn)以下三種情況:①質(zhì)量指標(biāo)值增加1,②質(zhì)量指標(biāo)值不變,③質(zhì)量指標(biāo)值減少1.已知每個(gè)零件最多可被加工一次,且該單位計(jì)劃將所有準(zhǔn)合格品逐一加工,在(2)的條件下,估計(jì)的最小值(精確到0.01 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)

1)當(dāng)時(shí),fx)的最小值是_____;

2)若f0)是fx)的最小值,則a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若有兩個(gè)極值點(diǎn),且恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左右頂點(diǎn)分別為.直線和兩條漸近線交于點(diǎn),點(diǎn)在第一象限且,是雙曲線上的任意一點(diǎn).

(1)求雙曲線的標(biāo)準(zhǔn)方程;

(2)是否存在點(diǎn)P使得為直角三角形?若存在,求出點(diǎn)P的個(gè)數(shù);

(3)直線與直線分別交于點(diǎn),證明:以為直徑的圓必過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)直線軸的交點(diǎn)為,經(jīng)過點(diǎn)的直線與曲線交于兩點(diǎn),若,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,點(diǎn)在橢圓.

(1)求橢圓的方程;

(2)設(shè)直線與圓相切,與橢圓相交于兩點(diǎn),求證:是定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案