【題目】自從新型冠狀病毒爆發(fā)以來,全國范圍內(nèi)采取了積極的措施進(jìn)行防控,并及時通報各項數(shù)據(jù)以便公眾了解情況,做好防護(hù).以下是湖南省2020123-31日這9天的新增確診人數(shù).

日期

23

24

25

26

27

28

29

30

31

時間

1

2

3

4

5

6

7

8

9

新增確診人數(shù)

15

19

26

31

43

78

56

55

57

經(jīng)過醫(yī)學(xué)研究,發(fā)現(xiàn)新型冠狀病毒極易傳染,一個病毒的攜帶者在病情發(fā)作之前通常有長達(dá)14天的潛伏期,這個期間如果不采取防護(hù)措施,則感染者與一位健康者接觸時間超過15秒,就有可能傳染病毒.

1)將123日作為第1天,連續(xù)9天的時間作為變量x,每天新增確診人數(shù)作為變量y,通過回歸分析,得到模型用于對疫情進(jìn)行分析.對上表的數(shù)據(jù)作初步處理,得到下面的一些統(tǒng)計量的值(部分?jǐn)?shù)據(jù)已作近似處理):,.根據(jù)相關(guān)數(shù)據(jù),求該模型的回歸方程(結(jié)果精確到0.1),并依據(jù)該模型預(yù)測第10天新增確診人數(shù).

2)如果一位新型冠狀病毒的感染者傳染給他人的概率為0.3,在一次12人的家庭聚餐中,只有一位感染者參加了聚餐,記余下的人員中被感染的人數(shù)為,求最有可能(即概率最大)的值是多少.

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為.

【答案】1)回歸方程為,估計第10天新增確診人數(shù)為人;(2.

【解析】

1)由模型,根據(jù)提供公式,結(jié)合數(shù)據(jù),求出,利用在回歸方程上求出,將代入回歸方程,即可估算結(jié)論;

2)根據(jù)已知可得余下的人員中被感染的人數(shù)為,服從二項分布

,且,即可求出最有可能(即概率最大)的值.

1,

,

回歸方程為,

當(dāng)時,,

估計第10天新增確診人數(shù)為人;

2)設(shè)余下11人中被感染的人數(shù)為,則,

,要使最大,

,

,

,

所以最有可能(即概率最大)的值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】未來肯定是非接觸的,無感支付的方式將成為主流,這有助于降低交互門檻”.云從科技聯(lián)合創(chuàng)始人姚志強(qiáng)告訴南方日報記者.相對于主流支付方式二維碼支付,刷臉支付更加便利,以前出門一部手機(jī)解決所有,而現(xiàn)在連手機(jī)都不需要了,畢竟,手機(jī)支付還需要攜帶手機(jī),打開二維碼也需要時間和手機(jī)信號.刷臉支付將會替代手機(jī),成為新的支付方式.某地從大型超市門口隨機(jī)抽取50名顧客進(jìn)行了調(diào)查,得到了如下列聯(lián)表:

男性

女性

總計

刷臉支付

18

25

非刷臉支付

13

總計

50

1)請將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有95%的把握認(rèn)為使用刷臉支付與性別有關(guān)?

2)從參加調(diào)查且使用刷臉支付的顧客中隨機(jī)抽取2人參加抽獎活動,抽獎活動規(guī)則如下:

一等獎中獎概率為0.25,獎品為10元購物券張(,且),二等獎中獎概率0.25,獎品為10元購物券兩張,三等獎中獎概率0.5,獎品為10元購物券一張,每位顧客是否中獎相互獨立,記參與抽獎的兩位顧客中獎購物券金額總和為元,若要使的均值不低于50元,求的最小值.

附:,其中.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.869

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是橢圓的右焦點,過點的直線交橢圓于兩點,當(dāng)直線的下頂點時,的斜率為,當(dāng)直線垂直于的長軸時,的面積為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)當(dāng)時,求直線的方程;

(Ⅲ)若直線上存在點滿足成等比數(shù)列,且點在橢圓外,證明:點在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點到定直線的距離與到定點的距離之比為.

1)求點的軌跡的方程;

2)已知點,在軸上是否存在一點,使得曲線上另有一點,滿足,且?若存在,求出所有符合條件的點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20201月,教育部《關(guān)于在部分高校開展基礎(chǔ)學(xué)科招生改革試點工作的意見》印發(fā),自2020年起,在部分高校開展基礎(chǔ)學(xué)科招生改革試點(也稱強(qiáng)基計劃.強(qiáng)基計劃聚焦高端芯片與軟件智能科技新材料先進(jìn)制造和國家安全等關(guān)鍵領(lǐng)域以及國家人才緊缺的人文社會科學(xué)領(lǐng)域,選拔培養(yǎng)有志于服務(wù)國家重大戰(zhàn)略需求且綜合素質(zhì)優(yōu)秀或基礎(chǔ)學(xué)科拔尖的學(xué)生.新材料產(chǎn)業(yè)是重要的戰(zhàn)略性新興產(chǎn)業(yè),下圖是我國2011-2019年中國新材料產(chǎn)業(yè)市場規(guī)模及增長趨勢圖.其中柱狀圖表示新材料產(chǎn)業(yè)市場規(guī)模(單位:萬億元),折線圖表示新材料產(chǎn)業(yè)市場規(guī)模年增長率(.

1)求2015年至2019年這5年的新材料產(chǎn)業(yè)市場規(guī)模的平均數(shù);

2)從2012年至2019年中隨機(jī)挑選一年,求該年新材料產(chǎn)業(yè)市場規(guī)模較上一年的年增加量不少于6000億元的概率;

3)由圖判斷,從哪年開始連續(xù)三年的新材料產(chǎn)業(yè)市場規(guī)模年增長率的方差最大.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是正方形,點在以為直徑的半圓弧上(不與重合),為線段的中點,現(xiàn)將正方形沿折起,使得平面平面.

1)證明:平面.

2)三棱錐的體積最大時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚(yáng)中國傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出曲線的極坐標(biāo)方程,并求出曲線公共弦所在直線的極坐標(biāo)方程;

2)若射線與曲線交于兩點,與曲線交于點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共有編號分別為1,2,3,4,5的五個座位,在甲同學(xué)不坐2號座位,乙同學(xué)不坐5號座位的條件下,甲、乙兩位同學(xué)的座位號相加是偶數(shù)的概率為( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案