【題目】給定一個四面體,若存在一個側(cè)面(其所在平面為),使得在將其余三個側(cè)面分別繞其位于平面上的邊向體外方向旋轉(zhuǎn)至平面上時,四個側(cè)面在平面上共同組成的圖形恰好是一個三角形,則稱該四面體是一個“平展四面體”.若有一個平展四面體,它的一個側(cè)面的三邊長為a、b、c,試確定a、b、c的關(guān)系,并求該四面體的體積(用a、b、c表示).

【答案】

【解析】

如圖,若四面體PDEF為平展四面體,且沿所在平面展平后的三角形為,則DE、EF、FD為的中位線.被其三條中位線所劃分成的四個全等三角形構(gòu)成四面體的四個側(cè)面,從而,四面體中共頂點的三個面角恰等于的三個內(nèi)角.故為銳角三角形,且三邊長為2a、2b、2c.

不妨設(shè),.

則由為銳角三角形知.

下面計算四面體PDEF的體積V.

設(shè)的外接圓半徑為R,.

.

設(shè)二面角P—DE—F的平面角為.則.

注意到,

,則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《易經(jīng)》是中國傳統(tǒng)文化中的精髓,如圖是易經(jīng)八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽線,四根陰線的概率為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為任意給定的質(zhì)數(shù).證明一定存在質(zhì)數(shù)使得對任意的整數(shù),數(shù)都不能被整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左焦點為,離心率為,為圓的圓心.

(1)求橢圓的方程;

(2)已知過橢圓右焦點的直線交橢圓于兩點,過且與垂直的直線與圓交于兩點,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列敘述正確的是(

A.相關(guān)關(guān)系是一種確定性關(guān)系,一般可分為正相關(guān)和負(fù)相關(guān)

B.回歸直線一定過樣本點的中心

C.在回歸分析中,的模型比的模型擬合的效果好

D.某同學(xué)研究賣出的熱飲杯數(shù)與氣溫(℃)時,一定可賣出杯熱飲

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于集合,若存在兩個數(shù)列滿足(i) ;(ii) ,則稱M為一個“友誼集”,稱(A,B)為的一種“友誼排列”,如A=(3,10,7,9,6)和B=(2,8,4,5,1)便是集合的一種友誼排列,記為

(1)證明:若為一個友誼集,則存在偶數(shù)種友誼排列;

(2)確定集合的全體友誼排列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓Cy21a1)的上頂點為A,右焦點為F,直線AF與圓Mx2y26x2y70相切.

1)求橢圓C的方程;

2)若不過點A的動直線l與橢圓C相交于P,Q兩點,且0,求證:直線l過定點,并求出該定點N的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知內(nèi)角的角平分線.

(1)用正弦定理證明: ;

2)若,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國人均讀書4.3本(包括網(wǎng)絡(luò)文學(xué)和教科書),比韓國的11本.法國的20本.日本的40本.猶太人的64本少得多,是世界上人均讀書最少的國家.”這個論斷被各種媒體反復(fù)引用.出現(xiàn)這樣的統(tǒng)計結(jié)果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國.禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準(zhǔn)備進一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)內(nèi)看書人員進行年齡調(diào)查,隨機抽取了一天名讀書者進行調(diào)查,將他們的年齡分成6段: , , , 后得到如圖所示的頻率分布直方圖.問:

(1)估計在40名讀書者中年齡分布在的人數(shù);

(2)求40名讀書者年齡的平均數(shù)和中位數(shù);

(3)若從年齡在的讀書者中任取2名,求恰有1名讀書者年齡在的概率.

查看答案和解析>>

同步練習(xí)冊答案