已知函數(shù),(
為常數(shù))
(I)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(II)若函數(shù)有兩個極值點,求實數(shù)
的取值范圍
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)
為了保護環(huán)境,某工廠在政府部門的支持下,進行技術(shù)改進: 把二氧化碳轉(zhuǎn)化為某種化工產(chǎn)品,經(jīng)測算,該處理成本(萬元)與處理量
(噸)之間的函數(shù)關(guān)系可近似地表示為:
, 且每處理一噸二氧化碳可得價值為
萬元的某種化工產(chǎn)品.
(Ⅰ)當(dāng) 時,判斷該技術(shù)改進能否獲利?如果能獲利,求出最大利潤;如果不能獲利,則國家至少需要補貼多少萬元,該工廠才不虧損?
(Ⅱ) 當(dāng)處理量為多少噸時,每噸的平均處理成本最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2+lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:當(dāng)x>1時,x2+lnx<
x3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)f(x)=x3+mx2+nx-2的圖象過點(-1,-6),且函數(shù)g(x)=+6x的圖象關(guān)于y軸對稱.
(1)求m、n的值及函數(shù)y=f(x)的單調(diào)區(qū)間;(6分)
(2)若a>0,求函數(shù)y=f(x)在區(qū)間(a-1,a+1)內(nèi)的極值.(6分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
.
(Ⅰ)如果函數(shù)在
上是單調(diào)函數(shù),求
的取值范圍;
(Ⅱ)是否存在正實數(shù),使得函數(shù)
在區(qū)間
內(nèi)有兩個不同的零點?若存在,請求出
的取值范圍;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。
(1)若,函數(shù)
在
上既能取到極大值,又能取到極小值,求
的取值范圍;
(2)當(dāng)時,
對任意的
恒成立,求
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù).
(1)若曲線在點
處的切線與直線
垂直,求函數(shù)
的單調(diào)區(qū)間;
(2)若對于都有
成立,試求
的取值范圍;
(3)記.當(dāng)
時,函數(shù)
在區(qū)間
上有兩個零點,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)為奇函數(shù),其圖象在點
處的切線與直線
垂直,導(dǎo)函數(shù)
的最小值為
.
(Ⅰ)求,
,
的值;(Ⅱ)求函數(shù)
的單調(diào)遞增區(qū)間.
(Ⅲ)求函數(shù)在
上的最大值和最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本大題12分)
已知函數(shù)在
上為單調(diào)遞增函數(shù).
(Ⅰ)求實數(shù)的取值范圍;
(Ⅱ)若,
,求
的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com