已知函數(shù)f(x)=
x

(1)求函數(shù)的定義域;
(2)判斷函數(shù)的單調性并加以證明.
(1)要使f(x)有意義,須滿足x≥0,
故函數(shù)f(x)的定義域為[0,+∞);
(2)f(x)在定義域內單調遞增,證明如下:
任取x1,x2∈[0,+∞),且x1<x2,
則f(x1)-f(x2)=
x1
-
x2
=
(
x1
+
x2
)(
x1
-
x2
)
x1
+
x2
=
x1-x2
x1
+
x2

∵x1,x2∈[0,+∞),且x1<x2,
∴x1-x2<0,
x1
+
x2
>0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
故f(x)在定義域內單調遞增;
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

下列函數(shù)中,在(1,+∞)上為減函數(shù)的是( 。
A.y=(x-2)2B.y=(
3
)x
C.y=-
1
x
D.y=-x3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(1+x)=f(1-x),當1<x1<x2時,[f(x2)-f(x1)](x2-x1)>0恒成立,設a=f(-
1
2
),b=f(2),c=f(3),則a,b,c的大小關系為(  )
A.b<a<cB.c<b<aC.b<c<aD.a(chǎn)<b<c

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,有一塊矩形草地,要在這塊草地上開辟一個內接四邊形建體育設施(圖中陰影部分),使其四個頂點分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設AE=x,陰影部分面積為y.
(1)求y關于x的函數(shù)關系式,并指出這個函數(shù)的定義域;
(2)當x為何值時,陰影部分面積最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對a,b∈R,記max{a,b}=
a(a<b)
b(a≥b)
,函數(shù)f(x)=max{|x+1|,|x-1|}(x∈R)的最小值是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設f(x)=
ex,x≤1
f(x-1),x>1
,則f(ln3)=( 。
A.
3
e
B.ln3-1C.eD.3e

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)y=x+
4
x-1
(x>1)
的最小值是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=|x-1|,g(x)=-x2+6x-5.
(1)若g(x)≥f(x),求實數(shù)x的取值范圍;
(2)求g(x)-f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=log2x,f(
1
4
)
等于(  )
A.-1B.-2C.2D.3

查看答案和解析>>

同步練習冊答案