【題目】在四棱錐中,平面ABCD,底面ABCD是直角梯形,,且,,點(diǎn)E是線段PD的中點(diǎn).

求證:平面PAB;

求證:平面平面PCD;

當(dāng)直線PC與平面PAD所成的角大小為時(shí),求線段PA的長.

【答案】(I) 證明見解析 (II) 證明見解析(III)

【解析】

取線段PA的中點(diǎn)F,連接EF、BF,得出,四邊形BCEF是平行四邊形,

即證,得出平面PAB;

由題意得出,可證平面PAC,從而證明平面平面PCD;

取線段AD中點(diǎn)H,連接CH、PH,可得,即證平面PAD;得出是直線PC與平面PAD所成的角,從而求得PA的值.

證明:取線段PA的中點(diǎn)F,連接EF、BF,

,且

所以四邊形BCEF是平行四邊形,

所以

平面PAB,平面PAB,

所以平面PAB

證明:由題意得,,又,

所以;

平面ABCD,

所以,且,

所以平面PAC

平面PCD,

所以平面平面PCD

解:取線段AD中點(diǎn)H,連接CHPH,

可得,且,

所以平面PAD;

所以是直線PC與平面PAD所成的角,

所以;

所以;

,

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線斜率為.

(1)求實(shí)數(shù)的值,并討論函數(shù)的單調(diào)性;

(2)若,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說明理由.

(3)估計(jì)居民月用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天壇公園是明、清兩代皇帝“祭天”“祈谷”的場所.天壇公園中的圜丘臺共有三層(如圖1所示),上層壇的中心是一塊呈圓形的大理石板,從中心向外圍以扇面形石(如圖2所示).上層壇從第一環(huán)至第九環(huán)共有九環(huán),中層壇從第十環(huán)至第十八環(huán)共有九環(huán),下層壇從第十九環(huán)至第二十七環(huán)共有九環(huán);第一環(huán)的扇面形石有9塊,從第二環(huán)起,每環(huán)的扇面形石塊數(shù)比前一環(huán)多9塊,則第二十七環(huán)的扇面形石塊數(shù)是______;上、中、下三層壇所有的扇面形石塊數(shù)是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在無窮數(shù)列中,是給定的正整數(shù),,

(Ⅰ)若,寫出的值;

(Ⅱ)證明:數(shù)列中存在值為的項(xiàng);

(Ⅲ)證明:若互質(zhì),則數(shù)列中必有無窮多項(xiàng)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在無窮數(shù)列中,是給定的正整數(shù),,

(Ⅰ)若,寫出的值;

(Ⅱ)證明:數(shù)列中存在值為的項(xiàng);

(Ⅲ)證明:若互質(zhì),則數(shù)列中必有無窮多項(xiàng)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面立角坐標(biāo)系中,過點(diǎn)的圓的圓心軸上,且與過原點(diǎn)傾斜角為的直線相切.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)點(diǎn)在直線上,過點(diǎn)作圓的切線,切點(diǎn)分別為、,求經(jīng)過、、四點(diǎn)的圓所過的定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=(x2aexaR).

1)若函數(shù)fx)有兩個(gè)不同的極值點(diǎn),求實(shí)數(shù)a的取值范圍;

2)當(dāng)a0時(shí),若關(guān)于x的方程fx)=m存在三個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合計(jì)

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合計(jì)

70

30

100

根據(jù)表中數(shù)據(jù),問是否有的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;

已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率.

附:

查看答案和解析>>

同步練習(xí)冊答案