【題目】在平面直角坐標系中,點在橢圓 上,過點的直線的方程為

(Ⅰ)求橢圓的離心率;

(Ⅱ)若直線軸、軸分別相交于兩點,試求面積的最小值;

(Ⅲ)設(shè)橢圓的左、右焦點分別為,點與點關(guān)于直線對稱,求證:點三點共線.

【答案】(Ⅰ);(Ⅱ);(Ⅲ)見解析

【解析】

(Ⅰ)求得橢圓C的a,b,c,運用離心率公式計算即可得到所求值;(Ⅱ)在直線l中,分別令x=0,y=0,求得A,B的坐標,求得三角形OAB的面積,由P代入橢圓方程,運用基本不等式即可得到所求最小值;(Ⅲ)討論①當x0=0時,P(0,±1),②當x0≠0時,設(shè)點Q(m,n),運用對稱,分別求得Q的坐標,運用三點共線的條件:斜率相等,即可得證.

(Ⅰ)依題意可知,所以橢圓離心率為

(Ⅱ)因為直線軸,軸分別相交于兩點,所以

,由,則

,由,則

所以的面積

因為點在橢圓 上,所以

所以.即,則

所以

當且僅當,即時,面積的最小值為

(Ⅲ)①當時,.當直線時,易得,此時,

因為,所以三點共線.同理,當直線時,三點共線.

②當時,設(shè)點,因為點與點關(guān)于直線對稱,

所以整理得

解得所以點

又因為,且

所以 .所以點三點共線.

綜上所述,點三點共線.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P-ABCD底面為正方形,PD⊥平面ABCD,PD=AD,M為線段PA上任意一點(不含端點),點N在線段BD上,且PM=DN.

1)求證:直線MN∥平面PCD.

2)若點M為線段PA的中點,求直線PB與平面AMN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)個正數(shù)依次圍成一個圓圈,其中是公差為的等差數(shù)列,而是公比為的等比數(shù)列.

1)若,求數(shù)列的所有項的和;

2)若,求的最大值;

3)當時是否存在正整數(shù),滿足?若存在,求出值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在邊長為4的菱形中,,于點,將沿折起到的位置,使,如圖2.

(1)求證:平面;

(2)求二面角的余弦值;

(3)判斷在線段上是否存在一點,使平面平面?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若的圖像與直線相切,求

Ⅱ)若且函數(shù)的零點為,

設(shè)函數(shù)試討論函數(shù)的零點個數(shù).(為自然常數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知數(shù)列,首項,設(shè)該數(shù)列的前項的和為,且

1)求數(shù)列的通項公式;

2)若數(shù)列滿足,求數(shù)列的通項公式;

3)在第(2)小題的條件下,令是數(shù)列的前項和,若對,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),是常數(shù)且.

(1)若曲線處的切線經(jīng)過點,求的值;

(2)若是自然對數(shù)的底數(shù)),試證明:①函數(shù)有兩個零點,②函數(shù)的兩個零點滿足.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】個不同的紅球和個不同的白球,放入同一個袋中,現(xiàn)從中取出個球.

1)若取出的紅球的個數(shù)不少于白球的個數(shù),則有多少種不同的取法;

2)取出一個紅球記分,取出一個白球記分,若取出個球的總分不少于分,則有多少種不同的取法;

3)若將取出的個球放入一箱子中,記“從箱子中任意取出個球,然后放回箱子中”為一次操作,如果操作三次,求恰有一次取到個紅球并且恰有一次取到個白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:圓心到直線的距離與圓的半徑之比為直線關(guān)于圓的距離比.

(1)設(shè)圓求過2,0的直線關(guān)于圓的距離比的直線方程;

(2)若圓軸相切于點0,3)且直線= 關(guān)于圓的距離比,求此圓的的方程;

(3)是否存在點,使過的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓的距離比始終相等?若存在,求出相應(yīng)的點點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案