(本題滿分16分)本題共有3個小題,第1小題滿分5分,第2小題滿分6分,第3小題滿分5分.
已知函數(shù)是奇函數(shù),定義域為區(qū)間D(使表達式有意義的實數(shù)x 的集合).
(1)求實數(shù)m的值,并寫出區(qū)間D;
(2)若底數(shù),試判斷函數(shù)在定義域D內(nèi)的單調(diào)性,并說明理由;
(3)當(,a是底數(shù))時,函數(shù)值組成的集合為,求實數(shù)的值.
(本題滿分16分)本題共有3個小題,第1小題滿分5分,第2小題滿分6分,第3小題滿分5分.
解 (1) ∵是奇函數(shù),
∴對任意,有,即.2分
化簡此式,得.又此方程有無窮多解(D是區(qū)間),
必有
,解得. ………4分
∴. 5分
(2) 當時,函數(shù)上是單調(diào)減函數(shù).
理由:令.
易知在上是隨增大而增大,在上是隨增大而減小,6分
故在上是隨增大而減。 8分
于是,當時,函數(shù)上是單調(diào)減函數(shù). 10分
(3) ∵,
∴. 11分
∴依據(jù)(2)的道理,當時,函數(shù)上是增函數(shù), 12分
即,解得. 14分
若,則在A上的函數(shù)值組成的集合為,不滿足函數(shù)值組成的集合是的要求.(也可利用函數(shù)的變化趨勢分析,得出b=1)
∴必有. 16分
因此,所求實數(shù)的值是.
科目:高中數(shù)學 來源:2011屆陜西省師大附中、西工大附中高三第五次聯(lián)考理數(shù) 題型:解答題
.三、解答題:本大題共6小題,共75分. 解答應寫出文字說明、證明過程或演算步驟.
16. (本題滿分12分)
已知函數(shù)為偶函數(shù), 且
(1)求的值;
(2)若為三角形的一個內(nèi)角,求滿足的的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江蘇大豐新豐中學高二上期中考試文數(shù)學試卷(解析版) 題型:解答題
(本小題滿分16分) 本題請注意換算單位
某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元。
(1)若該寫字樓共x層,總開發(fā)費用為y萬元,求函數(shù)y=f(x)的表達式;
(總開發(fā)費用=總建筑費用+購地費用)
(2)要使整幢寫字樓每平方米開發(fā)費用最低,該寫字樓應建為多少層?
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年陜西省、西工大附中高三第五次聯(lián)考理數(shù) 題型:解答題
.三、解答題:本大題共6小題,共75分. 解答應寫出文字說明、證明過程或演算步驟.
16. (本題滿分12分)
已知函數(shù)為偶函數(shù), 且
(1)求的值;
(2)若為三角形的一個內(nèi)角,求滿足的的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分16分)(本題中必要時可使用公式:)
設是各項均為正數(shù)的無窮項等差數(shù)列.
(Ⅰ)記,已知
,試求此等差數(shù)列的首項a1及公差d;
(Ⅱ)若的首項a1及公差d都是正整數(shù),問在數(shù)列中是否包含一個非常數(shù)列
的無窮項等比數(shù)列?若存在,請寫出的構造過程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分16分)(本題中必要時可使用公式:)
設是各項均為正數(shù)的無窮項等差數(shù)列.
(Ⅰ)記,已知
,試求此等差數(shù)列的首項a1及公差d;
(Ⅱ)若的首項a1及公差d都是正整數(shù),問在數(shù)列中是否包含一個非常數(shù)列
的無窮項等比數(shù)列?若存在,請寫出的構造過程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com