【題目】每個(gè)國(guó)家對(duì)退休年齡都有不一樣的規(guī)定,從2018年開(kāi)始,我國(guó)關(guān)于延遲退休的話題一直在網(wǎng)上熱議,為了了解市民對(duì)延遲退休的態(tài)度,現(xiàn)從某地市民中隨機(jī)選取100人進(jìn)行調(diào)查,調(diào)查情況如下表:

年齡段(單位:歲)

被調(diào)查的人數(shù)

贊成的人數(shù)

1)從贊成延遲退休的人中任選1人,此人年齡在的概率為,求出表格中的值;

2)若從年齡在的參與調(diào)查的市民中按照是否贊成延遲退休進(jìn)行分層抽樣,從中抽取10人參與某項(xiàng)調(diào)查,然后再?gòu)倪@10人中隨機(jī)抽取4人參加座談會(huì),記這4人中贊成延遲退休的人數(shù)為,求的分布列及數(shù)學(xué)期望.

【答案】1,;(2)分布列見(jiàn)解析,

【解析】

1)由題知,由古典概率公式可得,求得;

2)由分層抽樣計(jì)算得抽取10人中贊成的有8人,隨機(jī)變量的可能取值為2,3,4,分別求出相應(yīng)的概率,由此可求出隨機(jī)變量的分布列和數(shù)學(xué)期望.

解:(1)因?yàn)榭偣渤槿?/span>100人進(jìn)行調(diào)查,所以,

因?yàn)閺馁澇?/span>延遲退休的人中任選1人,其年齡在的概率為,所以.

2)從年齡在中按分層抽樣抽取10人,贊成的抽取人,不贊成的抽取2人,再?gòu)倪@10人中隨機(jī)抽取4人,則隨機(jī)變量的可能取值為2,3,4.

,

.

的分布列為

2

3

4

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上的偶函數(shù),其圖象關(guān)于點(diǎn)對(duì)稱,且在區(qū)間上是單調(diào)函數(shù),則的值是( )

A. B. C. D. 無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究“教學(xué)方式”對(duì)教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺(jué)性都一樣).以下莖葉圖為甲、乙兩班(每班均為20)學(xué)生的數(shù)學(xué)期末考試成績(jī).

甲班

乙班

合計(jì)

優(yōu)秀

不優(yōu)秀

合計(jì)

現(xiàn)從甲班數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?7分的同學(xué)至少有一名被抽中的概率;

(II)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀.請(qǐng)?zhí)顚?xiě)下面的2×2列聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.

下面臨界值表供參考:

P(K2k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), 為常數(shù)),函數(shù)為自然對(duì)數(shù)的底).

(1)討論函數(shù)的極值點(diǎn)的個(gè)數(shù);

(2)若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的內(nèi)切圓與三邊BC、CA、AB分別切于點(diǎn)D、E、F,直線AI、BI與分別交于點(diǎn).過(guò)點(diǎn)作邊AB的平行線分別與交于點(diǎn),聯(lián)結(jié),過(guò)點(diǎn)F作的一條垂線與交于點(diǎn),過(guò)點(diǎn)F作的一條垂線與交于點(diǎn).設(shè)直線與直線交于點(diǎn)C,類似地,得到點(diǎn)A’、B’.證明:的外接圓半徑是半徑的2倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)),.

(1)當(dāng)時(shí),求函數(shù)的極小值;

(2)若當(dāng)時(shí),關(guān)于的方程有且只有一個(gè)實(shí)數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)若上恰有2個(gè)點(diǎn)到的距離等于,求的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)求的極值;

2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓,定義橢圓的“相關(guān)圓”方程為.若拋物線的焦點(diǎn)與橢圓的一個(gè)焦點(diǎn)重合,且橢圓短軸的一個(gè)端點(diǎn)和其兩個(gè)焦點(diǎn)構(gòu)成直角三角形.

(1)求橢圓的方程和“相關(guān)圓”的方程;

(2)過(guò)“相關(guān)圓”上任意一點(diǎn)的直線l與橢圓交于兩點(diǎn).O為坐標(biāo)原點(diǎn),若,證明原點(diǎn)O到直線的距離是定值,并求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案