【題目】函數(shù)f(x)=sin(ωx+ )(ω>0)的圖象與x軸的交點(diǎn)橫坐標(biāo)構(gòu)成一個(gè)公差為 的等差數(shù)列,要得到g(x)=cos(ωx+ )的圖象,可將f(x)的圖象(
A.向右平移 個(gè)單位
B.向左平移 個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位

【答案】B
【解析】解:根據(jù)函數(shù)f(x)=sin(ωx+ )(ω>0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為 的等差數(shù)列,可得函數(shù)的周期為π, 即: =π,可得:ω=2,
可得:f(x)=sin(2x+ ).
再由函數(shù)g(x)=cos(2x+ )=sin[ ﹣(2x+ )]=sin[2(x+ )+ ],
故把f(x)=sin(2x+ ) 的圖象向左平移 個(gè)單位,可得函數(shù)g(x)=cos(2x+ )的圖象,
故選:B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)y=Asin(ωx+φ)的圖象變換(圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C: + =1(a>b>0)的離心率為 ,過左焦點(diǎn)任作直線l,交橢圓的上半部分于點(diǎn)M,當(dāng)l的斜率為 時(shí),|FM|=
(1)求橢圓C的方程;
(2)橢圓C上兩點(diǎn)A,B關(guān)于直線l對稱,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2 sin(ax﹣ )cos(ax﹣ )+2cos2(ax﹣ )(a>0),且函數(shù)的最小正周期為
(Ⅰ)求a的值;
(Ⅱ)求f(x)在[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閩越水鎮(zhèn)是閩侯縣打造閩都水鄉(xiāng)文化特色小鎮(zhèn)核心區(qū),該小鎮(zhèn)有一塊1800平方米的矩形地塊,開發(fā)商準(zhǔn)備在中間挖出三個(gè)矩形池塘養(yǎng)閩侯特色金魚,挖出的泥土堆在池塘四周形成基圍(陰影部分所示)種植柳樹,形成柳中觀魚特色景觀.假設(shè)池塘周圍的基圍寬均為2米,如圖,設(shè)池塘所占的總面積為平方米.

(1)試用表示a及;

(2)當(dāng)取何值時(shí),才能使得最大?并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x﹣ |+|x+2a|(a∈R,且a≠0)
(Ⅰ)當(dāng)a=﹣1時(shí),求不等式f(x)≥5的解集;
(Ⅱ)證明:f(x)≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=8lnx+15x﹣x2 , 數(shù)列{an}滿足an=f(n),n∈N+ , 數(shù)列{an}的前n項(xiàng)和Sn最大時(shí),n=(
A.15
B.16
C.17
D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,若方程f(f(x))=a(a>0)恰有兩個(gè)不相等的實(shí)根x1 , x2 , 則e e 的最大值為(
A.
B.2(ln2﹣1)
C.
D.ln2﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]
設(shè)函數(shù)f(x)=|2x+2|﹣|x﹣2|.
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)若x∈R,f(x)≥t2 t恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xln(x+1)+( ﹣a)x+2﹣a,a∈R.
(I)當(dāng)x>0時(shí),求函數(shù)g(x)=f(x)+ln(x+1)+ x的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a∈Z時(shí),若存在x≥0,使不等式f(x)<0成立,求a的最小值.

查看答案和解析>>

同步練習(xí)冊答案