【題目】已知分別是焦距為的橢圓的左、右頂點(diǎn), 為橢圓上非頂點(diǎn)的點(diǎn),直線的斜率分別為,且.
(1)求橢圓的方程;
(2)直線(與軸不重合)過(guò)點(diǎn)且與橢圓交于兩點(diǎn),直線與交于點(diǎn),試求點(diǎn)的軌跡是否是垂直軸的直線,若是,則求出點(diǎn)的軌跡方程,若不是,請(qǐng)說(shuō)明理由.
【答案】(1);(2)
【解析】試題分析:
(1)由題意可求得,則橢圓的方程為.
(2)由題意分類(lèi)討論直線斜率存在和斜率不存在兩種情況可得點(diǎn)的軌跡方程為.
試題解析:
(1)設(shè)為橢圓上非頂點(diǎn)的點(diǎn), ,又
,即,
,故橢圓的方程為.
(2)當(dāng)過(guò)點(diǎn)直線斜率不存在時(shí),不妨設(shè),直線的方程是,直線的方程是,交點(diǎn)為.若,由對(duì)稱性可知交點(diǎn)為.
點(diǎn)在直線上,
當(dāng)直線斜率存在時(shí),設(shè)的方程為,
由得,
記,則.
的方程是的方程是,
由得,
即
.
綜上所述,點(diǎn)的軌跡方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線m被兩平行線l1:x+y=0與l2:x+y+ =0所截得的線段的長(zhǎng)為2 ,則m的傾斜角可以是
①15° ②45° ③60° ④105°⑤120° ⑥165°
其中正確答案的序號(hào)是 . (寫(xiě)出所有正確答案的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生對(duì)“兩個(gè)一百年”奮斗目標(biāo)、實(shí)現(xiàn)中華民族偉大復(fù)興中國(guó)夢(mèng)的“關(guān)注度”(單位:天),某中學(xué)團(tuán)委組織學(xué)生在十字路口采用隨機(jī)抽樣的方法抽取了80名青年學(xué)生(其中男女人數(shù)各占一半)進(jìn)行問(wèn)卷調(diào)查,并進(jìn)行了統(tǒng)計(jì),按男女分為兩組,再將每組青年學(xué)生的月“關(guān)注度”分為6組: , , , , , ,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)現(xiàn)從“關(guān)注度”在的男生與女生中選取3人,設(shè)這3人來(lái)自男生的人數(shù)為,求的分布列與期望;
(3)在抽取的80名青年學(xué)生中,從月“關(guān)注度”不少于25天的人中隨機(jī)抽取2人,求至少抽取到1名女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某金匠以黃金為原材料加工一種飾品,經(jīng)多年的數(shù)據(jù)統(tǒng)計(jì)得知,該金匠平均每加5 個(gè)飾品中有4個(gè)成品和1個(gè)廢品,每個(gè)成品可獲利3萬(wàn)元,每個(gè)廢品損失1萬(wàn)元,假設(shè)該金匠加工每件飾品互不影響,以頻率估計(jì)概率.
(1)若金金匠加工4個(gè)飾品,求其中廢品的數(shù)量不超過(guò)1的概率;
(2)若該金匠加工了 3個(gè)飾品,求他所獲利潤(rùn)的數(shù)學(xué)期望.
(兩小問(wèn)的計(jì)算結(jié)果都用分?jǐn)?shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,且橢圓經(jīng)過(guò)點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線與橢圓交于、兩點(diǎn),點(diǎn)是線段上的點(diǎn),且,求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓C: 的左焦點(diǎn)為F,過(guò)點(diǎn)F的直線與橢圓C相交于A,B兩點(diǎn),直線l的傾斜角為60°, .
(1)求橢圓C的離心率;
(2)如果|AB|= ,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,邊a、b、c分別是角A、B、C的對(duì)邊,且滿足bcosC=(3a﹣c)cosB.
(1)求cosB;
(2)若 =4,b=4 ,求邊a,c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)銳角△ABC的三內(nèi)角A、B、C所對(duì)邊的邊長(zhǎng)分別為a、b、c,且 a=1,B=2A,則b的取值范圍為( )
A.( , )
B.(1, )
C.( ,2)
D.(0,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè) .若f(x)=x2+px+q的圖象經(jīng)過(guò)兩點(diǎn)(α,0),(β,0),且存在整數(shù)n,使得n<α<β<n+1成立,則( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com