【題目】如圖,M為△ABC的中線AD的中點(diǎn),過點(diǎn)M的直線分別交線段AB、AC于點(diǎn)P、Q兩點(diǎn),設(shè),,記.
(1)求的值;
(2)求函數(shù)的解析式(指明定義域);
(3)設(shè),,若對(duì)任意,總存在,使得成立,求實(shí)數(shù)a的取值范圍.
【答案】(1)4;(2),;(3).
【解析】
(1)表示出向量,根據(jù)、、三點(diǎn)共線,得到關(guān)于,的等式,
(2)解出即的解析式;
(3)分別根據(jù),的單調(diào)性,求出,的值域,結(jié)合集合的包含關(guān)系得到關(guān)于的不等式組,解出即可.
解:(1)過點(diǎn)的直線分別交兩邊、于、,
,,
又,,
,
又、、三點(diǎn)共線,
,
(2)由(1)知
,
由得,
,
,,;
(3)在,內(nèi)是減函數(shù),
,,
即函數(shù)的值域?yàn)?/span>,,
,
在,內(nèi)是增函數(shù),
,,
的值域?yàn)?/span>,,
由題設(shè)得,,,
則
解得的取值范圍是,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《九章算術(shù)·商功》中闡述:“斜解立方,得兩壍堵。斜解壍堵,其一為陽馬,一為鱉臑.陽馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗(yàn)之以棊,其形露矣.”若稱為“陽馬”的某幾何體的三視圖如圖所示,圖中網(wǎng)格紙上小正方形的邊長為1,則對(duì)該幾何體描述:
①四個(gè)側(cè)面都是直角三角形;
②最長的側(cè)棱長為;
③四個(gè)側(cè)面中有三個(gè)側(cè)面是全等的直角三角形;
④外接球的表面積為.
其中正確的個(gè)數(shù)為( )
A. 0B. 1
C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,,是的中點(diǎn),是的中點(diǎn).
(1)求異面直線與所成角的大。
(2)若直三棱柱的體積為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線與曲線C交于兩點(diǎn).
(1)求直線的普通方程和曲線C的直角坐標(biāo)方程;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是由非負(fù)整數(shù)組成的無窮數(shù)列,該數(shù)列前n項(xiàng)的最大值記為,第n項(xiàng)之后的各項(xiàng)的最小值記為,設(shè).
(1)若為,是一個(gè)周期為4的數(shù)列,寫出的值;
(2)設(shè)d為非負(fù)整數(shù),證明:)的充要條件是是公差為d的等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四面體中,,且兩兩互相垂直,點(diǎn)是的中心.
(1)求二面角的大小(用反三角函數(shù)表示);
(2)過作,垂足為,求繞直線旋轉(zhuǎn)一周所形成的幾何體的體積;
(3)將繞直線旋轉(zhuǎn)一周,則在旋轉(zhuǎn)過程中,直線與直線所成角記為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,F關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P,過F作軸的垂線交拋物線于M,N兩點(diǎn),給出下列三個(gè)結(jié)論:
①必為直角三角形;
②直線必與拋物線相切;
③的面積為.其中正確的結(jié)論是___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( )
A. 若直線平面,直線平面,則直線不一定平行于直線
B. 若平面不垂直于平面,則內(nèi)一定不存在直線垂直于平面
C. 若平面平面,則內(nèi)一定不存在直線平行于平面
D. 若平面平面,平面平面,,則一定垂直于平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前n項(xiàng)和為,,公差為
若,求數(shù)列的通項(xiàng)公式;
是否存在d,n使成立?若存在,試找出所有滿足條件的d,n的值,并求出數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com