【題目】如圖,在幾何體中,四邊形是菱形, 平面, , .
(1)證明:平面平面.
(2)若二面角是直二面角,求與平面所成角的正切值。
【答案】(1)見(jiàn)解析;(2)
【解析】試題分析:(1)利用面面垂直的判定定理證明即可; (2)利用二面角是直二面角,求出菱形的邊長(zhǎng),再求出與平面所成角的正切值.
試題解析:(1)證明:∵四邊形是菱形,∴
∵平面∴
∴平面
∵平面∴平面⊥平面
(2)(向量)解:以點(diǎn)為原點(diǎn), 方向?yàn)?/span>軸, 方向?yàn)?/span>軸, 方向?yàn)?/span>軸建立空間直角坐標(biāo)系,如圖。做的中點(diǎn),連接,因?yàn)?/span>平行且等于, .
所以四邊形為平行四邊形,
因?yàn)樵?/span>中, ,所以,所以
設(shè)長(zhǎng)為,則各點(diǎn)坐標(biāo)為
; ; ;
所以; ;
設(shè)為面的法向量; 為面的法向量。
所以;
得
令得
同理得
因?yàn)槎娼?/span>是直二面角,所以
得
由題可得: 為與平面所夾角
因?yàn)?/span>
所以
(幾何)
∵四邊形是菱形,∴
∴,∴
過(guò)作,連接,則為二面角的平面角
設(shè)菱形的邊長(zhǎng)為
∵, ,∴
在中, ,∴
∵二面角為直角,∴為直角
∴
在中, ,設(shè),則
∴
與平面所成角為
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為,過(guò)、、三點(diǎn)的圓的圓心坐標(biāo)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線(為常數(shù), )與橢圓交于不同的兩點(diǎn)和.
(。┊(dāng)直線過(guò),且時(shí),求直線的方程;
(ⅱ)當(dāng)坐標(biāo)原點(diǎn)到直線的距離為,且面積為時(shí),求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察圖中各正方形圖案,每條邊上有an個(gè)圓點(diǎn),第an個(gè)圖案中圓點(diǎn)的個(gè)數(shù)是an,按此規(guī)律推斷出所有圓點(diǎn)總和Sn與n的關(guān)系式為( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, , , , 平面.
(1)求證: 平面;
(2)若為線段的中點(diǎn),且過(guò)三點(diǎn)的平面與線段交于點(diǎn),確定點(diǎn)的位置,說(shuō)明理由;并求三棱錐的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)y=f(x)在區(qū)間[0,1]上的圖象是連續(xù)不斷的一條曲線,且恒有0≤f(x)≤1,可以用隨機(jī)模擬方法近似計(jì)算由曲線y=f(x)及直線x=0,x=1,y=0所圍成部分的面積S.先產(chǎn)生兩組(每組N個(gè))0~1區(qū)間上的均勻隨機(jī)數(shù)x1,x2,…,xN和y1,y2,…,yN,由此得到N個(gè)點(diǎn)(xi,yi)(i=1,2,…,N).再數(shù)出其中滿足yi≤f(xi)(i=1,2,…,N)的點(diǎn)數(shù)N1,那么由隨機(jī)模擬方法可得S的近似值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,M、N、P分別是正方體ABCD-A1B1C1D1的棱AB、BC、DD1上的點(diǎn).
(1)若,求證:無(wú)論點(diǎn)P在DD1上如何移動(dòng),總有BP⊥MN;
(2)棱DD1上是否存在這樣的點(diǎn)P,使得平面APC1⊥平面ACC1?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過(guò)定點(diǎn)P(2,3),傾斜角為.
(Ⅰ)寫(xiě)出直線l的參數(shù)方程和圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測(cè)出其中一項(xiàng)質(zhì)量指標(biāo)存在問(wèn)題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲,乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測(cè)出它們的這一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.表1是甲流水線樣本的頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖.
(1)根據(jù)圖,1估計(jì)乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標(biāo)值的中位數(shù);
(2)若將頻率視為概率,某個(gè)月內(nèi)甲,乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出不合格品約多少件?
(3)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有85%的把握認(rèn)為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲,乙兩條流水線的選擇有關(guān)”?
附: (其中為樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù)).
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)求曲線上的點(diǎn)到直線的距離的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com