【題目】在探究實(shí)系數(shù)一元二次方程的根與系數(shù)的關(guān)系時(shí),可按下述方法進(jìn)行:
設(shè)實(shí)系數(shù)一元二次方程……①
在復(fù)數(shù)集內(nèi)的根為, ,則方程①可變形為,
展開得.……②
比較①②可以得到:
類比上述方法,設(shè)實(shí)系數(shù)一元次方程(且)在復(fù)數(shù)集內(nèi)的根為, ,…, ,則這個(gè)根的積 __________.
【答案】
【解析】計(jì)算可得:
①設(shè)方程a0x+a1=0的1個(gè)根是x1,則;
②設(shè)方程a0x2+a1x+a2=0的2個(gè)根是x1,x2,則;
③設(shè)方程a0x3+a1x2+a2x+a3=0的3個(gè)根是x1,x2,x3,則;
④設(shè)方程a0x4+a1x3+a2x2+a3x+a4=0的4個(gè)根是x1,x2,x3,x4,則;
…
觀察式子的變化規(guī)律,
發(fā)現(xiàn)每一個(gè)方程的一個(gè)根都可能寫成規(guī)律性的式子,
是首項(xiàng)與尾項(xiàng)的分式形式,且符號(hào)是正負(fù)相間:
依此類推,第n個(gè)式子是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】面對全球范圍內(nèi)日益嚴(yán)峻的能源形勢與環(huán)保壓力,環(huán)保與低碳成為今后汽車發(fā)展的一大趨勢,越來越多的消費(fèi)者對新能源汽車表示出更多的關(guān)注,某研究機(jī)構(gòu)從汽車市場上隨機(jī)抽取N輛純電動(dòng)汽車調(diào)查其續(xù)航里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)航里程全部介于100公里和450公里之間,根據(jù)調(diào)查數(shù)據(jù)形成了如圖所示頻率分布表及頻率分布直方圖.
頻率分布表
分組 | 頻數(shù) | 頻率 |
[100,150) | 1 | 0.05 |
[150,200) | 3 | 0.15 |
[200,250) | x | 0.1 |
[250,300) | 6 | 0.3 |
[300,350) | 4 | 0.2 |
[350,400) | 3 | y |
[400,450] | 1 | 0.05 |
合計(jì) | N | 1 |
(1)試確定頻率分布表中x,y,N的值,并補(bǔ)全頻率分布直方圖;
(2)若從續(xù)航里程在[200,250)及[350,400)的車輛中隨機(jī)抽取2輛車,求兩輛車?yán)m(xù)航里程都在[350,400)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行節(jié)日促銷活動(dòng),消費(fèi)滿一定數(shù)額即可獲得一次抽獎(jiǎng)機(jī)會(huì),抽獎(jiǎng)這可以從以下兩種方式中任選一種進(jìn)行抽獎(jiǎng).
抽獎(jiǎng)方式①:讓抽獎(jiǎng)?wù)唠S意轉(zhuǎn)動(dòng)如圖所示的圓盤,圓盤停止后指針指向陰影部分(圖中四個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為,邊界忽略不計(jì))即中獎(jiǎng).
抽獎(jiǎng)方式②:讓抽獎(jiǎng)?wù)邚难b有3個(gè)白球和3個(gè)紅球的盒子中一次性摸出2個(gè)球(球除顏色外不加區(qū)分),如果摸到的是2個(gè)紅球,即中獎(jiǎng).
假如你是抽獎(jiǎng)?wù),為了讓中?jiǎng)的可能性大,你應(yīng)該選擇哪一種抽獎(jiǎng)方式?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí), ,若存在x∈[t2﹣1,t],使不等式f(2x+t)≥2f(x)成立,則實(shí)數(shù)t的取值范圍是. .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,設(shè)點(diǎn),且=2.
(1)求橢圓C的方程;
(2)已知四邊形MNPQ的四個(gè)頂點(diǎn)均在曲線C上,且MQ∥NP,MQ⊥x軸,若直線MN和直線QP交于點(diǎn)S(4,0).判斷四邊形MNPQ兩條對角線的交點(diǎn)是否為定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若函數(shù)y=f(x)在某一區(qū)間D上任取兩個(gè)實(shí)數(shù)x1、x2 , 且x1≠x2 , 都有 ,則稱函數(shù)y=f(x)在區(qū)間D上具有性質(zhì)L.
(1)寫出一個(gè)在其定義域上具有性質(zhì)L的對數(shù)函數(shù)(不要求證明).
(2)對于函數(shù) ,判斷其在區(qū)間(0,+∞)上是否具有性質(zhì)L?并用所給定義證明你的結(jié)論.
(3)若函數(shù) 在區(qū)間(0,1)上具有性質(zhì)L,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題:(1)函數(shù)f(x)在[0,+∞)上是增函數(shù),在(﹣∞,0)上也是增函數(shù),所以f(x)在R上是增函數(shù);(2)若函數(shù)f(x)=ax2+bx+2與x軸沒有交點(diǎn),則b2﹣8a<0,且a>0; (3)y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞);(4)函數(shù)y=lg10x和函數(shù)y=elnx表示相同函數(shù).其中正確命題的個(gè)數(shù)是( )
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a為實(shí)數(shù),記函數(shù)f(x)=a + + 的最大值為g(a).
(1)設(shè)t= + ,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t);
(2)求g(a);
(3)試求滿足g(a)=g( )的所有實(shí)數(shù)a.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com