【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)務(wù)極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線,

(1)求曲線,的直角坐標(biāo)方程;

(2)曲線的交點(diǎn)為,,求以為直徑的圓與軸的交點(diǎn)坐標(biāo).

【答案】(1) ;: (2) 點(diǎn)坐標(biāo)為

【解析】

(Ⅰ)根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,即可求解曲線的直角坐標(biāo)方程;

(Ⅱ)先求出MN的中點(diǎn)坐標(biāo),|MN|的長(zhǎng),可求得圓的方程,再令x=0,即可求解.

(Ⅰ)由sinθ+=,得ρsinθcos+cosθsin=,

代入上得x+y=1,即C1的直角坐標(biāo)方程為x+y+1=0

同理由ρ2=,可得3x2-y2=1,∴C2的直角坐標(biāo)方程為3x2-y2=1.

(Ⅱ)∵PMPN,先求以MN為直徑的圓,設(shè)Mx1,y1),Nx2,y2),

3x2-1-x2=1,即x2+x-1=0,

,則MN的中點(diǎn)坐標(biāo)為(-,),

由弦長(zhǎng)公式,可得|MN|=|x1-x2|==

∴以MN為直徑的圓:(x+2+y-2=2,

x=0,得+y-2=,即(y-2=,∴y=0y=3,

∴所求P點(diǎn)的坐標(biāo)為(0,0)或(0,3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的左、右焦點(diǎn)分別為,,離心率,點(diǎn)在橢圓C上,直線l過(guò)交橢圓于A,B兩點(diǎn).

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)當(dāng)時(shí),點(diǎn)Ax軸上方時(shí),求點(diǎn)A,B的坐標(biāo);

3)若直線y軸于點(diǎn)M,直線y軸于點(diǎn)N,是否存在直線l,使得的面積滿足,若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù)),把曲線橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)縮短為原來(lái)的一半,得到曲線,直線的普通方程是,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系;

(1)求直線的極坐標(biāo)方程和曲線的普通方程;

(2)記射線交于點(diǎn),與交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市開展年終大回饋,設(shè)計(jì)了兩種答題游戲方案:

方案一:顧客先回答一道多選題,從第二道開始都回答單選題;

方案二:顧客全部選擇單選題進(jìn)行回答;

其中每道單選題答對(duì)得2分,每道多選題答對(duì)得3分,無(wú)論單選題還是多選題答錯(cuò)都得0分,每名參與的顧客至多答題3道.在答題過(guò)程中得到3分或3分以上立刻停止答題,并獲得超市回饋的贈(zèng)品.

為了調(diào)查顧客對(duì)方案的選擇情況,研究人員調(diào)查了參與游戲的500名顧客,所得結(jié)果如下表所示:

男性

女性

選擇方案一

150

80

選擇方案二

150

120

(1)是否有95%的把握認(rèn)為方案的選擇與性別有關(guān)?

(2)小明回答每道單選題的正確率為0.8,多選題的正確率為0.75,.

①若小明選擇方案一,記小明的得分為,求的分布列及期望;

②如果你是小明,你覺(jué)得選擇哪種方案更有可能獲得贈(zèng)品,請(qǐng)通過(guò)計(jì)算說(shuō)明理由.

附:,

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了16月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

日期

110

210

310

410

510

610

晝夜溫差(℃)

10

11

13

12

8

6

就診人數(shù)(個(gè))

22

25

29

26

16

12

1)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)25月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?

(參考數(shù)據(jù)

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題:關(guān)于的不等式無(wú)解;命題:指數(shù)函數(shù)上的增函數(shù).

(1)若命題為真命題,求實(shí)數(shù)的取值范圍;

(2)若滿足為假命題且為真命題的實(shí)數(shù)取值范圍是集合,集合,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,,且.

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】非空有限集合是由若干個(gè)正實(shí)數(shù)組成,集合的元素個(gè)數(shù).對(duì)于任意,數(shù)中至少有一個(gè)屬于,稱集合好集”:否則,稱集合壞集”.

1)判斷好集”,還是壞集;

2)題設(shè)的有限集合,既有大于1的元素,又有小于1的元素,證明:集合壞集”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直平行六面體的所有棱長(zhǎng)都為2,,過(guò)體對(duì)角線的截面S與棱分別交于點(diǎn)E、F,給出下列命題中:

①四邊形的面積最小值為;

②直線EF與平面所成角的最大值為;

③四棱錐的體積為定值;

④點(diǎn)到截面S的距離的最小值為.

其中,所有真命題的序號(hào)為(

A.①②③B.①③④C.①③D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案