【題目】將一顆質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1、2、3、4、56)先后拋擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為,第二次出現(xiàn)的點(diǎn)數(shù)為.

1)設(shè)復(fù)數(shù)為虛數(shù)單位),求事件為實(shí)數(shù)的概率;

2)求點(diǎn)落在不等式組表示的平面區(qū)域內(nèi)(含邊界)的概率.

【答案】12

【解析】

1)根據(jù)為實(shí)數(shù)求得,求出符合條件的的個(gè)數(shù),用概率的計(jì)算公式求解即可;

2)先求出拋擲兩次骰子的基本事件總數(shù),畫出平面區(qū)域,再求出滿足條件的基本事件數(shù),即可求得概率.

1為虛數(shù)單位),為實(shí)數(shù),

為實(shí)數(shù),所以.

依題意得的可能取值為12、34、5、6

的概率為.

即事件為實(shí)數(shù)的概率為.

2)連續(xù)拋擲兩次骰子所得結(jié)果如下表:

1

2

3

4

5

6

1

2

3

4

5

6

由上表知,連續(xù)拋擲兩次骰子共有36種不同的結(jié)果.

不等式組所表示的平面區(qū)域如圖中陰影部分所示(含邊界).

由圖知 點(diǎn)落在四邊形內(nèi)的結(jié)果有:、、、、、、、、、、、,共18.

所以點(diǎn)落在四邊形內(nèi)(含邊界)的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,直線軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且F的直線C相交于A、B兩點(diǎn).

(1)求C的方程;

(2)設(shè)點(diǎn)的面積為求直線的方程;

(3)若線段AB的垂直平分線與C相交于M、N兩點(diǎn),且AM、B、N四點(diǎn)在同一圓上,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的左、右焦點(diǎn)分別為F1F2,離心率為,兩準(zhǔn)線之間的距離為8.點(diǎn)P在橢圓E上,且位于第一象限,過點(diǎn)F1作直線PF1的垂線l1,過點(diǎn)F2作直線PF2的垂線l2.

(1)求橢圓E的標(biāo)準(zhǔn)方程;

(2)若直線l1,l2的交點(diǎn)Q在橢圓E上,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,ADBCABACAD3,PABC4.

1)求異面直線PBCD所成角的余弦值;

2)求平面PAD與平面PBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分13分)

為回饋顧客,某商場(chǎng)擬通過摸球兌獎(jiǎng)的方式對(duì)1000位顧客進(jìn)行獎(jiǎng)勵(lì),規(guī)定:每位顧客從一個(gè)裝有4個(gè)標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個(gè)球,球上所標(biāo)的面值之和為該顧客所獲的獎(jiǎng)勵(lì)額.

1)若袋中所裝的4個(gè)球中有1個(gè)所標(biāo)的面值為50元,其余3個(gè)均為10元,求

顧客所獲的獎(jiǎng)勵(lì)額為60元的概率

顧客所獲的獎(jiǎng)勵(lì)額的分布列及數(shù)學(xué)期望;

2)商場(chǎng)對(duì)獎(jiǎng)勵(lì)總額的預(yù)算是60000元,并規(guī)定袋中的4個(gè)球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎(jiǎng)勵(lì)總額盡可能符合商場(chǎng)的預(yù)算且每位顧客所獲的獎(jiǎng)勵(lì)額相對(duì)均衡,請(qǐng)對(duì)袋中的4個(gè)球的面值給出一個(gè)合適的設(shè)計(jì),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)的圖象在點(diǎn)(2,f (2))處的切線方程為16xy200.

1)求實(shí)數(shù)a、b的值;

2)求函數(shù)f(x)在區(qū)間[1,2]上的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: 經(jīng)過點(diǎn)P(2,1),且離心率為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),在橢圓短軸上有兩點(diǎn)M,N滿足,直線PM、PN分別交橢圓于A,B.探求直線AB是否過定點(diǎn),如果經(jīng)過定點(diǎn)請(qǐng)求出定點(diǎn)的坐標(biāo),如果不經(jīng)過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)三位數(shù)的各位數(shù)字中,有且僅有兩個(gè)數(shù)字一樣,我們就把這樣的三位數(shù)定義為單重?cái)?shù)”.例如:232,114等,則不超過200單重?cái)?shù)中,從小到大排列第25個(gè)單重?cái)?shù)是(

A.166B.171C.181D.188

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若執(zhí)行下面的程序框圖,輸出的值為3,則判斷框中應(yīng)填入的條件是(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案