【題目】“石頭、剪刀、布”,又稱“猜丁殼”,是一種流傳多年的猜拳游戲,起源于中國(guó),然后傳到日本、朝鮮等地,隨著亞歐貿(mào)易的不斷發(fā)展,它傳到了歐洲,到了近代逐漸風(fēng)靡世界.其游戲規(guī)則是:出拳之前雙方齊喊口令,然后在話音剛落時(shí)同時(shí)出拳,握緊的拳頭代表“石頭”,食指和中指伸出代表“剪刀”,五指伸開代表“布”.“石頭”勝“剪刀”、“剪刀”勝“布”、而“布”又勝過(guò)“石頭”.若所出的拳相同,則為和局.小千和大年兩位同學(xué)進(jìn)行“五局三勝制”的“石頭、剪刀、布”游戲比賽,則小千和大年比賽至第四局小千勝出的概率是(
A.
B.
C.
D.

【答案】B
【解析】解:根據(jù)“石頭”勝“剪刀”,“剪刀”勝“布”,而“布”又勝“石頭”, 可得每局比賽中小千勝大年、小千與大年和局和小千輸給大年的概率都為
∴小千和大年兩位同學(xué)進(jìn)行“五局三勝制”的“石頭、剪刀、布”游戲比賽,
則小千和大年比賽至第四局小千勝出,由指前3局中小千勝2局,有1局不勝,第四局小千勝,
∴小千和大年比賽至第四局小千勝出的概率是:
p= =
故選:B.
小千和大年比賽至第四局小千勝出,由指前3局中小千勝2局,有1局不勝,第四局小千勝,由此能求出小千和大年比賽至第四局小千勝出的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》有如下問(wèn)題:有上禾三秉(古代容量單位),中禾二秉,下禾一秉,實(shí)三十九斗;上禾二秉,中禾三秉,下禾一秉,實(shí)三十四斗;上禾一秉,中禾二秉,下禾三秉,實(shí)二十六斗.問(wèn)上、中、下禾一秉各幾何?依上文:設(shè)上、中、下禾一秉分別為x斗、y斗、z斗,設(shè)計(jì)如圖所示的程序框圖,則輸出的x,y,z的值分別為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游艇制造廠研發(fā)了一種新游艇,今年前5個(gè)月的產(chǎn)量如下:

(1)設(shè)關(guān)于的回歸直線方程為現(xiàn)根據(jù)表中數(shù)據(jù)已經(jīng)正確計(jì)算出了的值為,試求的值,并估計(jì)該廠月份的產(chǎn)量;(計(jì)算結(jié)果精確到

(Ⅱ)質(zhì)檢部門發(fā)現(xiàn)該廠月份生產(chǎn)的游艇都存在質(zhì)量問(wèn)題,要求廠家召回;現(xiàn)有一旅游公司曾向該廠購(gòu)買了今年前兩個(gè)月生產(chǎn)的游艇艘,求該旅游公司有游艇被召回的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo) 中,設(shè)橢圓 的左右兩個(gè)焦點(diǎn)分別為 ,過(guò)右焦點(diǎn) 且與 軸垂直的直線 與橢圓 相交,其中一個(gè)交點(diǎn)為 .

(1)求橢圓 的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面程序框圖中,若輸入互不相等的三個(gè)正實(shí)數(shù)a,b,c(abc≠0),要求判斷△ABC的形狀,則空白的判斷框應(yīng)填入(
A.a2+b2>c2?
B.a2+c2>b2?
C.b2+c2>a2?
D.b2+a2=c2?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .
(1) 時(shí),證明: ;
(2)當(dāng) 時(shí),直線 和曲線 切于點(diǎn) ,求實(shí)數(shù) 的值;
(3)當(dāng) 時(shí),不等式 恒成立,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD,PC⊥底面ABCDADBC,AD=2BC=2,PC=2,ABC是以AC為斜邊的等腰直角三角形,EPD的中點(diǎn).

(1)求證:平面EAC⊥平面PCD

(2)求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了及時(shí)向群眾宣傳“十九大”黨和國(guó)家“鄉(xiāng)村振興”戰(zhàn)略,需要尋找一個(gè)宣講站,讓群眾能在最短的時(shí)間內(nèi)到宣講站.設(shè)有三個(gè)鄉(xiāng)鎮(zhèn),分別位于一個(gè)矩形的兩個(gè)頂點(diǎn)的中點(diǎn)處,,,現(xiàn)要在該矩形的區(qū)域內(nèi)(含邊界),且與等距離的一點(diǎn)處設(shè)一個(gè)宣講站,記點(diǎn)到三個(gè)鄉(xiāng)鎮(zhèn)的距離之和為

(Ⅰ)設(shè),將表示為的函數(shù);

(Ⅱ)試?yán)茫á瘢┑暮瘮?shù)關(guān)系式確定宣講站的位置,使宣講站到三個(gè)鄉(xiāng)鎮(zhèn)的距離之和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,點(diǎn)P(0, ),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為 .直線l的參數(shù)方程為 為參數(shù)).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)設(shè)直線l與曲線C的兩個(gè)交點(diǎn)分別為A,B,求 + 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案