【題目】2019年電商“雙十一”大戰(zhàn)即將開始.某電商為了盡快占領市場,搶占今年“雙十一”的先機,對成都地區(qū)年齡在1575歲的人群“是否網(wǎng)上購物”的情況進行了調查,隨機抽取了100人,其年齡頻率分布表和使用網(wǎng)上購物的人數(shù)如下所示:(年齡單位:歲)

年齡段

頻率

0.1

0.32

0.28

0.22

0.05

0.03

購物人數(shù)

8

28

24

12

2

1

1)若以45歲為分界點,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.001的前提下認為“網(wǎng)上購物”與年齡有關?

年齡低于45

年齡不低于45

總計

使用網(wǎng)上購物

不使用網(wǎng)上購物

總計

2)若從年齡在的樣本中隨機選取2人進行座談,求選中的2人中恰好有1人“使用網(wǎng)上購物”的概率.

參考數(shù)據(jù):

0.025

0.010

0.005

0.001

3.841

6.635

7.879

10.828

參考公式:.

【答案】(1)列聯(lián)表見解析,可以在犯錯誤的概率不超過0.001的前提下認為“使用網(wǎng)上購物”與年齡有關

(2)

【解析】

1)由已知表格可得列聯(lián)表中需要的數(shù)據(jù),根據(jù)公式計算可得結論;

25人中有2人參與網(wǎng)購,求出任選2人的方法總數(shù)及所求事件的方法數(shù)后可得概率.

解:(1)由統(tǒng)計表可得,低于45歲人數(shù)為70人,不低于45歲人數(shù)為30人,可得列聯(lián)表如下:

年齡低于45歲

年齡不低于45歲

總計

使用網(wǎng)上購物

60

15

75

不使用網(wǎng)上購物

10

15

25

總計

70

30

100

于是有的觀測值.

故可以在犯錯誤的概率不超過0.001的前提下認為“使用網(wǎng)上購物”與年齡有關.

(2)由題意可知,基本事件的總數(shù)為10.

記事件為:選中的2人中恰好有1人“使用網(wǎng)上購物”.

所包含的基本事件的總數(shù)為6.

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】要得到的圖象,只要將圖象怎樣變化得到( )

A.的圖象沿x軸方向向左平移個單位

B.的圖象沿x軸方向向右平移個單位

C.先作關于x軸對稱圖象,再將圖象沿x軸方向向右平移個單位

D.先作關于x軸對稱圖象,再將圖象沿x軸方向向左平移個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)討論函數(shù)的單調性;

(2)若函數(shù)在區(qū)間有唯一零點,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線的焦點為,準線為,,以為圓心的圓相切于點的縱坐標為,是圓軸的不同于的一個交點.

1)求拋物線與圓的方程;

2)過且斜率為的直線交于,兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線Cy=,D為直線y=上的動點,過DC的兩條切線,切點分別為A,B.

1)證明:直線AB過定點:

2)若以E(0,)為圓心的圓與直線AB相切,且切點為線段AB的中點,求四邊形ADBE的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已如橢圓E)的離心率為,點E.

1)求E的方程:

2)斜率不為0的直線l經(jīng)過點,且與E交于P,Q兩點,試問:是否存在定點C,使得?若存在,求C的坐標:若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,橢圓C的離心率是,拋物線E的焦點FC的一個頂點.

)求橢圓C的方程;

)設PE上的動點,且位于第一象限,E在點P處的切線C交與不同的兩點AB,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M

i)求證:點M在定直線上;

ii)直線y軸交于點G,記的面積為,的面積為,求的最大值及取得最大值時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐的所有頂點都在球的球面上,平面,,,若球的表面積為,則三棱錐的側面積的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)下列條件求方程.

(1)已知頂點的坐標為,求外接圓的方程;

(2)若過點的直線被圓所截的弦長為,求直線的方程.

查看答案和解析>>

同步練習冊答案