【題目】現(xiàn)有邊長均為1的正方形正五邊形正六邊形及半徑為1的圓各一個(gè),在水平桌面上無滑動(dòng)滾動(dòng)一周,它們的中心的運(yùn)動(dòng)軌跡長分別為,,,,則( )
A.B.C.D.
【答案】B
【解析】
由題意可知,它們的中心滾動(dòng)一周的運(yùn)動(dòng)軌跡都是圓心角為2π的弧長,設(shè)半徑分別為r1,r2,r3,r4,則半徑為中心與頂點(diǎn)的距離,由正方形、正五邊形、正六邊形得幾何特征可知,r1<r2<1,r3=r4=1,再利用弧長公式即可得到l1<l2<l3=l4.
解:由題意可知,它們的中心滾動(dòng)一周的運(yùn)動(dòng)軌跡都是圓心角為2π的弧長,
設(shè)半徑分別為r1,r2,r3,r4,由題意可知,半徑為中心與頂點(diǎn)的距離,
又因?yàn)檎叫、正五邊形、正六邊形的邊長均為1,圓的半徑為1,
對于正方形,如圖所示:,∵∠AOB=90°,∴;
對于正五邊形,如圖所示:,∵∠AOB=72°<90°,∠OAB=∠OBA=54°<72°,∴r1<r2<1;
對于正六邊形,如圖所示:,∠AOB=60°,∴△AOB為等邊三角形,∴r3=OA=1;
而 r4=1,
又因?yàn)?/span>l1=2πr1,l2=2πr2,l3=2πr3,l4=2πr4,
所以l1<l2<l3=l4,
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新型冠狀病毒肺炎COVID-19疫情發(fā)生以來,在世界各地逐漸蔓延.在全國人民的共同努力和各級部門的嚴(yán)格管控下,我國的疫情已經(jīng)得到了很好的控制.然而,每個(gè)國家在疫情發(fā)生初期,由于認(rèn)識不足和措施不到位,感染確診人數(shù)都會出現(xiàn)加速增長.如表是小王同學(xué)記錄的某國從第一例新型冠狀病毒感染確診之日開始,連續(xù)8天每日新型冠狀病毒感染確診的累計(jì)人數(shù).
日期代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
累計(jì)確診人數(shù) | 4 | 8 | 16 | 31 | 51 | 71 | 97 | 122 |
為了分析該國累計(jì)感染確診人數(shù)的變化趨勢,小王同學(xué)分別用兩種模型:
①,②對變量和的關(guān)系進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,殘差圖如下(注:殘差,且經(jīng)過計(jì)算得,,其中,,
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)該選擇哪個(gè)模型?并簡要說明理由;
(2)根據(jù)(1)中選定的模型求出相應(yīng)的回歸方程;
(3)如果第9天該國仍未采取有效的防疫措施,試根據(jù)(2)中所求的回歸方程估計(jì)該國第9天新型冠狀病毒感染確診的累計(jì)人數(shù).(結(jié)果保留為整數(shù))
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,錯(cuò)誤命題是
A. “若,則”的逆命題為真
B. 線性回歸直線必過樣本點(diǎn)的中心
C. 在平面直角坐標(biāo)系中到點(diǎn)和的距離的和為的點(diǎn)的軌跡為橢圓
D. 在銳角中,有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)兩個(gè)極值點(diǎn)分別為,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第41屆世界博覽會于2010年5月1日至10月31日,在中國上海舉行,氣勢磅礴的中國館——“東方之冠”令人印象深刻,該館以“東方之冠,鼎盛中華,天下糧倉,富庶百姓”為設(shè)計(jì)理念,代表中國文化的精神與氣質(zhì).其形如冠蓋,層疊出挑,制似斗拱.它有四根高33.3米的方柱,托起斗狀的主體建筑,總高度為60.3米,上方的“斗冠”類似一個(gè)倒置的正四棱臺,上底面邊長是139.4米,下底面邊長是69.9米,則“斗冠”的側(cè)面與上底面的夾角約為( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線E的參數(shù)方程為(為參數(shù)),以O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線,的極坐標(biāo)方程分別為,,交曲線E于點(diǎn)A,B,交曲線E于點(diǎn)C,D.
(1)求曲線E的普通方程及極坐標(biāo)方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】向50名學(xué)生調(diào)查對A、B兩事件的態(tài)度,有如下結(jié)果:贊成A的人數(shù)是全體的五分之三,其余的不贊成,贊成B的比贊成A的多3人,其余的不贊成;另外,對A、B都不贊成的學(xué)生數(shù)比對A、B都贊成的學(xué)生數(shù)的三分之一多1人. 問對A、B都贊成的學(xué)生有____________人
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com