【題目】已知橢圓 經(jīng)過點 ,且離心率為 .
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A,B是橢圓C的左,右頂點,P為橢圓上異于A,B的一點,以原點O為端點分別作與直線AP和BP平行的射線,交橢圓C于M,N兩點,求證:△OMN的面積為定值.
【答案】解:(Ⅰ)∵橢圓 經(jīng)過點 ,且離心率為 ,
∴ ,解得a=2,b= ,
∴橢圓C的方程為 .
證明:(Ⅱ)設(shè)P(x0 , y0),M(x1 , y1),N(x2 , y2),
①M(x1 , y1),N(x2 , y2)在x軸同側(cè),不妨設(shè)x1>0,x2<0,y1>0,y2>0,
射線OM的方程為y= ,射線ON的方程為y= ,
∴ , ,且 ,
過M,N作x軸的垂線,垂足分別為M′,N′,
﹣
=
=
= = =﹣ ,
由 ,得 ,
即 = =2+x0 ,
同理, =2﹣x0 , ∴ =4﹣ =2 ,即 ,
∴ .
②M(x1 , y1),N(x2 , y2)在x軸異側(cè),同理①得 ,
綜合①②,△OMN的面積為定值
【解析】(Ⅰ)由橢圓經(jīng)過點 ,且離心率為 ,列出方程給求出a,b,由此能求出橢圓C的方程.(Ⅱ)設(shè)P(x0 , y0),M(x1 , y1),N(x2 , y2),當(dāng)M(x1 , y1),N(x2 , y2)在x軸同側(cè),不妨設(shè)x1>0,x2<0,y1>0,y2>0,推導(dǎo)出 , ,且 ,過M,N作x軸的垂線,垂足分別為M′,N′, ﹣ =﹣ ,由 ,得 ,由此求出 .當(dāng)M(x1 , y1),N(x2 , y2)在x軸異側(cè),同理得 ,由此能證明△OMN的面積為定值 .
【考點精析】解答此題的關(guān)鍵在于理解橢圓的標(biāo)準方程的相關(guān)知識,掌握橢圓標(biāo)準方程焦點在x軸:,焦點在y軸:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x2+2bx+c,設(shè)函數(shù)g(x)=|f(x)|在區(qū)間[﹣1,1]上的最大值為M.
(1)若b=2,試求出M;
(2)若M≥k對任意的b、c恒成立,試求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的方程為(x﹣3)2+y2=1,圓M的方程為(x﹣3﹣3cosθ)2+(y﹣3sinθ)2=1(θ∈R),過M上任意一點P作圓C的兩條切線PA,PB,切點分別為A、B,則∠APB的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù) 的圖象向左平移m(m>0)個單位長度,得到函數(shù)y=f(x)圖象在區(qū)間 上單調(diào)遞減,則m的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={a1 , a2 , …,an},ai∈R,i=1,2,…,n,并且n≥2. 定義 (例如: ).
(Ⅰ)若A={1,2,3,4,5,6,7,8,9,10},M={1,2,3,4,5},集合A的子集N滿足:N≠M,且T(M)=T(N),求出一個符合條件的N;
(Ⅱ)對于任意給定的常數(shù)C以及給定的集合A={a1 , a2 , …,an},求證:存在集合B={b1 , b2 , …,bn},使得T(B)=T(A),且 .
(Ⅲ)已知集合A={a1 , a2 , …,a2m}滿足:ai<ai+1 , i=1,2,…,2m﹣1,m≥2,a1=a,a2m=b,其中a,b∈R為給定的常數(shù),求T(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某加工廠用某原料由車間加工出A產(chǎn)品,由乙車間加工出B產(chǎn)品.甲車間加工一箱原料需耗費工時10小時可加工出7千克A產(chǎn)品,每千克A產(chǎn)品獲利40元.乙車間加工一箱原料需耗費工時6小時可加工出4千克B產(chǎn)品,每千克B產(chǎn)品獲利50元.甲、乙兩車間每天功能完成至多70多箱原料的加工,每天甲、乙車間耗費工時總和不得超過480小時,甲、乙兩車間每天獲利最大的生產(chǎn)計劃為( )
A.甲車間加工原料10箱,乙車間加工原料60箱
B.甲車間加工原料15箱,乙車間加工原料55箱
C.甲車間加工原料18箱,乙車間加工原料50箱
D.甲車間加工原料40箱,乙車間加工原料30箱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=x﹣ sin2x+asinx在(﹣∞,+∞)單調(diào)遞增,則a的取值范圍是( )
A.[﹣1,1]
B.[﹣1, ]
C.[﹣ , ]
D.[﹣1,﹣ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在單調(diào)遞增數(shù)列{an}中,a1=2,a2=4,且a2n﹣1 , a2n , a2n+1成等差數(shù)列,a2n , a2n+1 , a2n+2成等比數(shù)列,n=1,2,3,….
(Ⅰ)(。┣笞C:數(shù)列 為等差數(shù)列;
(ⅱ)求數(shù)列{an}的通項公式.
(Ⅱ)設(shè)數(shù)列 的前n項和為Sn , 證明:Sn> ,n∈N* .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com