【題目】已知函數(shù)為自然對數(shù)的底數(shù).

1)求曲線處的切線方程;

2)關(guān)于的不等式上恒成立,求實(shí)數(shù)的值;

3)關(guān)于的方程有兩個實(shí)根,求證:

【答案】(1);(2); (3)見解析.

【解析】(1)對函數(shù)求導(dǎo)得

,

,

∴曲線處的切線方程為,即;

(2)記,其中,

由題意知上恒成立,下求函數(shù)的最小值,

求導(dǎo)得,

,得,

當(dāng)變化時, 變化情況列表如下:

-

0

+

極小值

,

,

,則

,得

當(dāng)變化時, 變化情況列表如下:

1

+

0

-

極大值

,

當(dāng)且僅當(dāng)時取等號,

,從而得到

3)先證,

,則

,得,

當(dāng)變化時, 變化情況列表如下:

-

0

+

極小值

,

恒成立,即,

記直線分別與交于

不妨設(shè),則,

從而,當(dāng)且僅當(dāng)時取等號,

由(2)知, ,則,

從而,當(dāng)且僅當(dāng)時取等號,

,

因等號成立的條件不能同時滿足,故

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過原點(diǎn)的動直線與圓相交于不同的兩點(diǎn)

1求線段的中點(diǎn)的軌跡的方程;

2是否存在實(shí)數(shù)使得直線與曲線只有一個交點(diǎn)?若存在,求出的取值范圍;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)為調(diào)研學(xué)生在 兩家餐廳用餐的滿意度,從在, 兩家餐廳都用過餐的學(xué)生中隨機(jī)抽取了100人,每人分別對這兩家餐廳進(jìn)行評分,滿分均為60分.

整理評分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組: , , , ,得到餐廳分?jǐn)?shù)的頻率分布直方圖,和餐廳分?jǐn)?shù)的頻數(shù)分布表:

(Ⅰ)在抽樣的100人中,求對餐廳評分低于30的人數(shù);

(Ⅱ)從對餐廳評分在范圍內(nèi)的人中隨機(jī)選出2人,求2人中恰有1人評分在范圍內(nèi)的概率;

(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖像經(jīng)過點(diǎn),曲線在點(diǎn)處的切線恰好與直線垂直.

(1)求實(shí)數(shù)的值;

(2)求在函數(shù)圖像上任意一點(diǎn)處切線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的一段圖象如下所示.
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)減區(qū)間,并指出f(x)的最大值及取到最大值時x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: ()的右焦點(diǎn)為F(2,0),且過點(diǎn)P(2, ). 直線過點(diǎn)F且交橢圓C于A、B兩點(diǎn).

1求橢圓C的方程

2若線段AB的垂直平分線與x軸的交點(diǎn)為M(),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時,f(x)= (1﹣x).
(1)求f(0),f(1);
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)是原點(diǎn),以軸為對稱軸,且經(jīng)過點(diǎn).

(Ⅰ)求拋物線的方程;

(Ⅱ)設(shè)點(diǎn), 在拋物線上,直線, 分別與軸交于點(diǎn) , .求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng),則稱點(diǎn)為平面上單調(diào)格點(diǎn):設(shè)

求從區(qū)域中任取一點(diǎn),而該點(diǎn)落在區(qū)域上的概率;

求從區(qū)域中的所有格點(diǎn)中任取一點(diǎn),而該點(diǎn)是區(qū)域上的格點(diǎn)的概率.

查看答案和解析>>

同步練習(xí)冊答案