【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍;
(2)當時,分別求函數(shù)的最小值和的最大值,并證明當時, 成立;
(3)令,當時,判斷函數(shù)有幾個不同的零點并證明.
【答案】(1);(2)見解析;(3)1個
【解析】試題分析:(1)由題意得在上恒成立,根據(jù)恒成立問題的解答方法求解;
(2)分別求出函數(shù)和的導數(shù),研究出函數(shù)的單調(diào)性即可求出最值;
根據(jù)題意得,可判斷出,即在上單調(diào)遞減,得出函數(shù)至多有一個零點,再利用零點存在性定理進行判斷.
試題解析:
(1)由題意得在上恒成立,
令,有即,
得,所以.
(2)由題意可得
令,則,
所以在上單調(diào)遞減,在上單調(diào)遞增,
所以當時, 取最小值3, ,令,得,
當在上單調(diào)遞增,所以,
因為當時, ,
所以當時, .
(3)因為,
所以,
其定義域為,,
因為,所以,所以在上單調(diào)遞減,
因為,所以,所以,又,所以函數(shù)只有1個零點.
科目:高中數(shù)學 來源: 題型:
【題目】若an=log(n+1)(n+2)(n∈N),我們把使乘積a1a2…an為整數(shù)的數(shù)n叫做“劣數(shù)”,則在區(qū)間(1,2004)內(nèi)所有劣數(shù)的和為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,福建省大力推進海峽西岸經(jīng)濟區(qū)建設(shè),福州作為省會城市,在發(fā)展過程中,交通狀況一直倍受有關(guān)部門的關(guān)注,據(jù)有關(guān)統(tǒng)計數(shù)據(jù)顯示上午6點到10點,車輛通過福州市區(qū)二環(huán)路某一路段的用時y(分鐘)與車輛進入該路段的時刻t之間關(guān)系可近似地用如下函數(shù)給出:y= .求上午6點到10點,通過該路段用時最多的時刻.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了引導居民合理用電,國家決定實行合理的階梯電價,居民用電原則上以住宅為單位(一套住宅為一戶).
階梯級別 | 第一階梯 | 第二階梯 | 第三階梯 |
月用電范圍(度) | (0,210] | (210,400] |
某市隨機抽取10戶同一個月的用電情況,得到統(tǒng)計表如下:
居民用電戶編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
用電量(度) | 53 | 86 | 90 | 124 | 132 | 200 | 215 | 225 | 300 | 410 |
若規(guī)定第一階梯電價每度0.5元,第二階梯超出第一階梯的部分每度0.6元,第三階梯超出第二階梯的部分每度0.8元,試計算A居民用電戶用電410度時應(yīng)電費多少元?
現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯電量的戶數(shù)的分布列與期望;
以表中抽到的10戶作為樣本估計全市的居民用電,現(xiàn)從全市中依次抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(ax2+bx+c)ex在[0,1]上單調(diào)遞減且滿足f(0)=1,f(1)=0.
(1)求a取值范圍;
(2)設(shè)g(x)=f(x)﹣f′(x),求g(x)在[0,1]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了增強高考與高中學習的關(guān)聯(lián)度,考生總成績由統(tǒng)一高考的語文、數(shù)學、外語3個科目成績和高中學業(yè)水平考試3個科目成績組成.保持統(tǒng)一高考的語文、數(shù)學、外語科目不變,分值不變,不分文理科,外語科目提供兩次考試機會.計入總成績的高中學業(yè)水平考試科目,由考生根據(jù)報考高校要求和自身特長,在思想政治、歷史、地理、物理、化學、生物、信息技術(shù)七科目中自主選擇三科.
(1)某高校某專業(yè)要求選考科目物理,考生若要報考該校該專業(yè),則有多少種選考科目的選擇;
(2)甲、乙、丙三名同學都選擇了物理、化學、歷史組合,各學科成績達到二級的概率都是0.8,且三人約定如果達到二級不參加第二次考試,達不到二級參加第二次考試,如果設(shè)甲、乙、丙參加第二次考試的總次數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位建造一間背面靠墻的小房,地面面積為12m2 , 房屋正面每平方米造價為1200元,房屋側(cè)面每平方米造價為800元,屋頂?shù)脑靸r為5800元,如果墻高為3m,且不計房屋背面和地面的費用,設(shè)房屋正面地面的邊長為xm,房屋的總造價為y元.
(1)求y用x表示的函數(shù)關(guān)系式;
(2)怎樣設(shè)計房屋能使總造價最低?最低總造價是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=n(n+1),
(1)求數(shù)列{an}的通項公式an
(2)數(shù)列{bn}的通項公式bn= ,求數(shù)列{bn}的前n項和為Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com