【題目】在平面直角坐標系中,直線l的參數(shù)方程為 (其中t為參數(shù)),現(xiàn)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρ=4cosθ.
(Ⅰ)寫出直線l和曲線C的普通方程;
(Ⅱ)已知點P為曲線C上的動點,求P到直線l的距離的最小值.

【答案】解:(Ⅰ)直線l: (其中t為參數(shù)),消去參數(shù)t得普通方程y=x﹣4.

由ρ=4cosθ得ρ2=4ρcosθ.

由x=ρcosθ,y=ρsinθ以及x2+y22,得

y2+(x﹣2)2=4;

(Ⅱ)由y2+(x﹣2)2=4得圓心坐標為(2,0),半徑R=2,

則圓心到直線的距離為:d= =3 ,

而點P在圓上,即O′P+PQ=d(Q為圓心到直線l的垂足),

所以點P到直線l的距離最小值為3√2﹣√2=2√2.


【解析】(Ⅰ)消去參數(shù)t即可得到直線l的普通方程;利用x=ρcosθ,y=ρsinθ將曲線C轉化為普通方程;(Ⅱ)利用點到直線的距離公式,求出P到直線l的距離的最小值,再根據(jù)函數(shù)取最值的情況求出P點的坐標,得到本題結論.
【考點精析】通過靈活運用直線的參數(shù)方程,掌握經(jīng)過點,傾斜角為的直線的參數(shù)方程可表示為為參數(shù))即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+b(a、b∈R)在區(qū)間[0,1]上有零點,則ab的最大值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學典籍《九章算術》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結果n=(
A.4
B.5
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓M: (a>b>0)的一個焦點為F(1,0),離心率為 ,過點F的動直線交M于A,B兩點,若x軸上的點P(t,0)使得∠APO=∠BPO總成立(O為坐標原點),則t=(
A.2
B.
C.
D.﹣2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知α∈[0,π),在直角坐標系xOy中,直線l1的參數(shù)方程為 (t為參數(shù));在以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,直線l2的極坐標方程是ρcos(θ﹣α)=2sin(α+ ).
(Ⅰ)求證:l1⊥l2
(Ⅱ)設點A的極坐標為(2, ),P為直線l1 , l2的交點,求|OP||AP|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內角A,B,C的對邊分別是a,b,c,且 =
(Ⅰ)求角B的大小;
(Ⅱ)點D滿足 =2 ,且線段AD=3,求2a+c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50),[50,60),…,[80,90),[90,100].
(Ⅰ)求頻率分布直方圖中a的值;
(Ⅱ)估計該企業(yè)的職工對該部門評分不低于80的概率;
(Ⅲ)從評分在[40,60)的受訪職工中,隨機抽取2人,求此2人的評分都在[40,50)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且(a+b+c)(a+b﹣c)=3ab.
(Ⅰ)求角C的值;
(Ⅱ)若c=2,且△ABC為銳角三角形,求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2|x+a|+|x﹣ |(a≠0).
(1)當a=1時,解不等式f(x)<4;
(2)求函數(shù)g(x)=f(x)+f(﹣x)的最小值.

查看答案和解析>>

同步練習冊答案