【題目】2016年10月28日,經(jīng)歷了近半個(gè)世紀(jì)風(fēng)雨的南京長(zhǎng)江大橋真“累”了,終于停下來(lái)喘口氣了,之前大橋在改善我們城市的交通狀況方面功不可沒(méi).據(jù)相關(guān)數(shù)據(jù)統(tǒng)計(jì),一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到280輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過(guò)30輛/千米時(shí),車流速度為50千米/小時(shí).研究表明,當(dāng)30≤x≤280時(shí),車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤280時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí)) f(x)=xv(x)可以達(dá)到最大,并求出最大值.
【答案】
(1)解:由題意,得當(dāng)0≤x≤30時(shí),v(x)=50;
當(dāng)30<x≤280時(shí),
設(shè)v(x)=ax+b.
由已知 ,解得a=﹣0.2,b=56,
故函數(shù)v(x)的表達(dá)式為v(x)=
(2)解:f(x)=xv(x)= ,
當(dāng)0≤x≤30時(shí),f(x)≤1500.
當(dāng)30<x≤280時(shí),f(x)=﹣0.2(x﹣140)2+3920,∴x=140,f(x)max=3920
∴車流密度x為140,f(x)=xv(x)可以達(dá)到最大為3920
【解析】(1)設(shè)v(x)=ax+b.利用x的范圍,列出方程組求解a,b,即可得到函數(shù)的解析式.(2)求出車流量f(x)=v(x)x的表達(dá)式,然后求解最大值即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一條河的兩岸平行,河的寬度d=600m,一艘客船從碼頭A出發(fā)勻速駛往河對(duì)岸的碼頭B.已知|AB|=1km,水流速度為2km/h, 若客船行駛完航程所用最短時(shí)間為6分鐘,則客船在靜水中的速度大小為( )
A.8km/h
B.km/h
C.km/h
D.10km/h
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確的個(gè)數(shù)是( )
①向量 與 是共線向量,則A、B、C、D必在同一直線上;
②向量 與向量 平行,則 方向相同或相反;
③若下列向量 、 滿足 ,且 與 同向,則 ;
④若 ,則 的長(zhǎng)度相等且方向相同或相反;
⑤由于零向量方向不確定,故不能與任何向量平行.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為;曲線的極坐標(biāo)方程為;曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標(biāo)方程、曲線的直角坐標(biāo)方程和曲線的普通方程;
(2)若直線與曲線曲線在第一象限的交點(diǎn)分別為,求之間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的方格紙由若干個(gè)邊長(zhǎng)為1的小正方形并在一起組成,方格紙中有兩個(gè)定點(diǎn)A,B,點(diǎn)C為小正方形的頂點(diǎn),且
(1)畫出所有的向量 ;
(2)求| |的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)求在上的單調(diào)區(qū)間;
(Ⅱ)求在(為自然對(duì)數(shù)的底數(shù))上的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中,且
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),若存在極大值,且對(duì)于的一切可能取值, 的極大值均小于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2-(a+2)x+ln x.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(3)若對(duì)任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com