【題目】已知定義在上的函數(shù)滿足: , .若方程有5個(gè)實(shí)根,則正數(shù)a的取值范圍是( )
A. B. C. D.
【答案】C
【解析】
由,得函數(shù)f(x)的周期為4,做出函數(shù)y=f(x)與函數(shù)y=ax的圖象,由圖象可得方程y=﹣(x﹣4)2+1=ax 在(3,5)上有2個(gè)實(shí)數(shù)根,解得 0<a<8﹣2.再由方程f(x)=ax 在(5,6)內(nèi)無解可得6a>1.由此求得正實(shí)數(shù)a的取值范圍.
由,得函數(shù)f(x)是以4為周期的周期函數(shù),做出函數(shù)y=f(x)與函數(shù)y=ax的圖象,由圖象可得方程y=﹣(x﹣4)2+1=ax, 即 x2+(a﹣8)x+15=0在(3,5)上有2個(gè)實(shí)數(shù)根,由 解得 0<a<8﹣2.再由方程f(x)=ax 在(5,6)內(nèi)無解可得6a>1,a>.綜上可得:<a<8﹣2,
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是拋物線上一點(diǎn),為的焦點(diǎn).
(1)若,是上的兩點(diǎn),證明:,,依次成等比數(shù)列.
(2)過作兩條互相垂直的直線與的另一個(gè)交點(diǎn)分別交于,(在的上方),求向量在軸正方向上的投影的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若有兩個(gè)相異零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓與雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中直線與拋物線C:交于A,B兩點(diǎn),且.
求C的方程;
若D為直線外一點(diǎn),且的外心M在C上,求M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)x滿足x2-2ax-3a2<0(a>0),命題q:實(shí)數(shù)x滿足≥0.
(Ⅰ)若a=1,p,q都為真命題,求x的取值范圍;
(Ⅱ)若q是p的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體的棱上(除去棱AD)到直線與的距離相等的點(diǎn)有個(gè),記這個(gè)點(diǎn)分別為,則直線與平面所成角的正弦值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線的一條漸近線方程是,坐標(biāo)原點(diǎn)到直線AB的距離為,其中,.
(1)求雙曲線的方程;
(2)若是雙曲線虛軸在y軸正半軸上的端點(diǎn),過點(diǎn)B作直線交雙曲線于點(diǎn)M,N,求時(shí),直線MN的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com