【題目】已知冪函數(shù)f(x)=(﹣2m2+m+2)xm+1為偶函數(shù).
(1)求f(x)的解析式;
(2)若函數(shù)y=f(x)﹣2(a﹣1)x+1在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:

得m=1或m=﹣ ,

當(dāng)m=1時(shí),f(x)=x2,符合題意;

當(dāng)m=﹣ 時(shí),f(x)= ,為非奇非偶函數(shù),不合題意,舍去.

∴f(x)=x2


(2)解:由(1)得y=f(x)﹣2(a﹣1)x+1=x2﹣2(a﹣1)x+1,

即函數(shù)的對稱軸為x=a﹣1,

由題意知函數(shù)在(2,3)上為單調(diào)函數(shù),

∴對稱軸a﹣1≤2或a﹣1≥3,

即a≤3或a≥4


【解析】(1)根據(jù)冪函數(shù)的性質(zhì)即可求f(x)的解析式;(2)根據(jù)函數(shù)y=f(x)﹣2(a﹣1)x+1在區(qū)間(2,3)上為單調(diào)函數(shù),利用二次函數(shù)對稱軸和區(qū)間之間的關(guān)系即可,求實(shí)數(shù)a的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)械廠今年進(jìn)行了五次技能考核,其中甲、乙兩名技術(shù)骨干得分的平均分相等,成績統(tǒng)計(jì)情況如莖葉圖所示(其中09的某個(gè)整數(shù))

1)若該廠決定從甲乙兩人中選派一人去參加技能培訓(xùn),從成績穩(wěn)定性角度考慮,你認(rèn)為誰去比較合適?

2)若從甲的成績中任取兩次成績作進(jìn)一步分析,在抽取的兩次成績中,求至少有一次成績在(90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中, // , , 點(diǎn)邊的中點(diǎn), 將△沿折起,使平面⊥平面,連接, , , 得到如

圖所示的空間幾何體.

(Ⅰ)求證: ⊥平面;

(Ⅱ)若,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= + 的定義域?yàn)椋?/span>
A.[﹣2,0)∪(0,2]
B.(﹣1,0)∪(0,2]
C.[﹣2,2]
D.(﹣1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)擬建立一個(gè)藝術(shù)博物館,采取競標(biāo)的方式從多家建筑公司選取一家建筑公司,經(jīng)過層層篩選,甲、乙兩家建筑公司進(jìn)入最后的招標(biāo).現(xiàn)從建筑設(shè)計(jì)院聘請專家設(shè)計(jì)了一個(gè)招標(biāo)方案:兩家公司從個(gè)招標(biāo)問題中隨機(jī)抽取個(gè)問題,已知這個(gè)招標(biāo)問題中,甲公司可正確回答其中的道題目,而乙公司能正確回答毎道題目的概率均為,甲、乙兩家公司對每題的回答都是相互獨(dú)立,互不影響的.

(1)求甲、乙兩家公司共答對道題目的概率;

(2)請從期望和方差的角度分析,甲、乙兩家哪家公司競標(biāo)成功的可能性更大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,點(diǎn) 的極坐標(biāo)是,曲線 的極坐標(biāo)方程為.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為 軸的正半軸建立平面直角坐標(biāo)系,斜率為 的直線 經(jīng)過點(diǎn).

(1)寫出直線 的參數(shù)方程和曲線 的直角坐標(biāo)方程;

(2)若直線 和曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐的底面為平行四邊形,且,, 分別為中點(diǎn),過作平面分別與線段相交于點(diǎn).

(Ⅰ)在圖中作出平面使面 (不要求證明);

(II)若,在(Ⅰ)的條件下求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組在電腦上進(jìn)行人工降雨模擬實(shí)驗(yàn),準(zhǔn)備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實(shí)施人工降雨,其實(shí)驗(yàn)統(tǒng)計(jì)結(jié)果如下

方式

實(shí)施地點(diǎn)

大雨

中雨

小雨

模擬實(shí)驗(yàn)次數(shù)

A

2次

6次

4次

12次

B

3次

6次

3次

12次

C

2次

2次

8次

12次

假定對甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,且不考慮洪澇災(zāi)害,請根據(jù)統(tǒng)計(jì)數(shù)據(jù):

1)求甲、乙、丙三地都恰為中雨的概率;

2考慮不同地區(qū)的干旱程度,當(dāng)雨量達(dá)到理想狀態(tài)時(shí),能緩解旱情,若甲、丙地需中雨或大雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),記甲、乙、丙三地中緩解旱情的個(gè)數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=1+
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性,并證明;
(3)求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案