精英家教網 > 高中數學 > 題目詳情

【題目】已知數列{an}滿足:Sn=1﹣an(n∈N*),其中Sn為數列{an}的前n項和. (Ⅰ)試求{an}的通項公式;
(Ⅱ)若數列{bn}滿足: (n∈N*),試求{bn}的前n項和公式Tn

【答案】解:(Ⅰ)∵Sn=1﹣an① ∴Sn+1=1﹣an+1
②﹣①得an+1=﹣an+1+an an;
n=1時,a1=1﹣a1a1=

(Ⅱ)因為 bn= =n2n
所以 Tn=1×2+2×22+3×23+…+n×2n
2Tn=1×22+2×23+…+n×2n+1
③﹣④﹣Tn=2+22+23+…+2n﹣n2n+1=
整理得 Tn=(n﹣1)2n+1+2.
【解析】(Ⅰ)先把n=1代入求出a1 , 再利用an+1=Sn+1﹣Sn求解數列的通項公式即可.(Ⅱ)把(Ⅰ)的結論代入,發(fā)現其通項為一等差數列乘一等比數列組成的新數列,故直接利用數列求和的錯位相減法求和即可.
【考點精析】解答此題的關鍵在于理解數列的前n項和的相關知識,掌握數列{an}的前n項和sn與通項an的關系,以及對數列的通項公式的理解,了解如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,三棱臺DEF ABC,AB=2DE,G,H分別為AC,BC的中點.

(1)求證:平面ABED∥平面FGH

(2)CFBC,ABBC求證:平面BCD⊥平面EGH.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知α為銳角,且 ,函數 ,數列{an}的首項a1=1,an+1=f(an).
(1)求函數f(x)的表達式;
(2)求證:數列{an+1}為等比數列;
(3)求數列{an}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】求經過點A(-1,-2)且到原點距離為1的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某上市股票在30天內每股的交易價格(元)與時間(天)組成有序對,點落在右方圖象中的兩條線段上,該股票在30天內(包括30天)的日交易量(萬股)與時間(天)的函數關系為: ,

(1)根據提供的圖象,寫出該種股票每股的交易價格(元)與時間(天)所滿足的函數關系式;

(2)用(萬元)表示該股票日交易額,寫出關于的函數關系式,并求出這30天中第幾天日交易額最大,最大值為多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C的對稱中心為坐標原點O,焦點在x軸上,左右焦點分別為F,F,左右頂點分別為A,B,且|F1F2|=4,|AB|=4
(1)求橢圓的方程;
(2)過F1的直線l與橢圓C相交于M,N兩點,若△MF2N的面積為 ,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x+1|﹣|x﹣2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設各項均為正數的數列{an}的前n項和為Sn , 且滿足an2﹣2Sn=2﹣an(n∈N*).
(1)求數列{an}的通項公式;
(2)設bn= ,求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C在直角坐標系xOy下的參數方程為 (θ為參數).以O為極點,x軸的非負半軸為極軸建立極坐標系.
(I)求曲線C的極坐標方程;
(Ⅱ)直線l的極坐標方程是ρcos(θ﹣ )=3 ,射線OT:θ= (ρ>0)與曲線C交于A點,與直線l交于B,求線段AB的長.

查看答案和解析>>

同步練習冊答案