已知是拋物線的焦點(diǎn),上的兩個(gè)點(diǎn),線段AB的中點(diǎn)為,則的面積等于              
2

試題分析:利用點(diǎn)斜式設(shè)過M的直線方程,與拋物線方程聯(lián)立消去y,根據(jù)韋達(dá)定理求得x1+x2和x1x2的表達(dá)式,根據(jù)AB的中點(diǎn)坐標(biāo)求得k,進(jìn)而求得直線方程,求得AB的長(zhǎng)度和焦點(diǎn)到直線的距離,最后利用三角形面積公式求得答案。解:設(shè)過M的直線方程為y﹣2=k(x﹣2),由
,
由題意,于是直線方程為y=x,x1+x2=4,x1x2=0,
,焦點(diǎn)F(1,0)到直線y=x的距離
∴△ABF的面積是×4×=2
故答案為2
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問題.當(dāng)直線與圓錐曲線相交時(shí) 涉及弦長(zhǎng)問題,常用“韋達(dá)定理法”設(shè)而不求計(jì)算弦長(zhǎng)(即應(yīng)用弦長(zhǎng)公式)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

平面內(nèi)與兩定點(diǎn)連線的斜率之積等于非零常數(shù)的點(diǎn)的軌跡,加上 兩點(diǎn),所成的曲線可以是圓,橢圓或雙曲線.
(Ⅰ)求曲線的方程,并討論的形狀與值的關(guān)系;
(Ⅱ)當(dāng)時(shí),對(duì)應(yīng)的曲線為;對(duì)給定的,對(duì)應(yīng)的曲線為,若曲線的斜率為的切線與曲線相交于兩點(diǎn),且為坐標(biāo)原點(diǎn)),求曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

我們把焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對(duì)“相關(guān)曲線”.已知是一對(duì)相關(guān)曲線的焦點(diǎn),是它們?cè)诘谝幌笙薜慕稽c(diǎn),當(dāng)時(shí),這一對(duì)相關(guān)曲線中雙曲線的離心率是(  )
                                     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中心在原點(diǎn),焦點(diǎn)在軸上的雙曲線的離心率為,直線與雙曲線交于兩點(diǎn),線段中點(diǎn)在第一象限,并且在拋物線上,且到拋物線焦點(diǎn)的距離為,則直線的斜率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線,直線與該雙曲線只有一個(gè)公共點(diǎn),
k =                .(寫出所有可能的取值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線的焦點(diǎn)為,過焦點(diǎn)且不平行于軸的動(dòng)直線交拋物線于,兩點(diǎn),拋物線在兩點(diǎn)處的切線交于點(diǎn).

(Ⅰ)求證:,三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)設(shè)直線交該拋物線于,兩點(diǎn),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是拋物線的焦點(diǎn),準(zhǔn)線與軸的交點(diǎn)為,點(diǎn)在拋物線上,且,則等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在橢圓上找一點(diǎn),使這一點(diǎn)到直線的距離的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的長(zhǎng)軸長(zhǎng)為,焦點(diǎn)是,點(diǎn)到直線的距離為,過點(diǎn)且傾斜角為銳角的直線與橢圓交于A、B兩點(diǎn),使得|=3|.
(1)求橢圓的標(biāo)準(zhǔn)方程;         
(2)求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案