【題目】已知函數(shù)f(x)= ,點A、B是函數(shù)f(x)圖象上不同兩點,則∠AOB(O為坐標原點)的取值范圍是(
A.(0,
B.(0, ]
C.(0,
D.(0, ]

【答案】A
【解析】解:當x≤0時,由y= 得y2﹣9x2=1,(x≤0),此時對應的曲線為雙曲線,雙曲線的漸近線為y=﹣3x,此時漸近線的斜率k1=﹣3, 當x>0時,f(x)=1+xex1 , 當過原點的直線和f(x)相切時,設切點為(a,1+aea1),
函數(shù)的導數(shù)f′(x)=ex1+xex1=(x+1)ex1
則切線斜率k2=f′(a)=(a+1)ea1 ,
則對應的切線方程為y﹣(1+aea1)=(1+a)ea1(x﹣a),
即y=(1+a)ea1(x﹣a)+1+aea1
當x=0,y=0時,(1+a)ea1(﹣a)+1+aea1=0,
即a2ea1+aea1=1+aea1
即a2ea1=1,得a=1,此時切線斜率k2=2,
則切線和y=﹣3x的夾角為θ,
則tanθ=| |= ,則θ=
故∠AOB(O為坐標原點)的取值范圍是(0, ),
故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,△BCD為正三角形,AD=AB=2, ,AC與BD中心O點,將△ACD沿邊AC折起,使D點至P點,已知PO與平面ABCD所成的角為60°.
(1)求證:平面PAC⊥平面PDB;
(2)求已知二面角A﹣PB﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知對任意的x∈R,3a(sinx+cosx)+2bsin2x≤3(a,b∈R)恒成立,則當a+b取得最小值時,a的值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個總體分為A,B兩層,其個體數(shù)之比為5:1,用分層抽樣方法從總體中抽取一個容量為12的樣本,已知B層中甲、乙都被抽到的概率為 ,則總體中的個數(shù)為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為2ρ2﹣ρ2cos2θ=12.若曲線C的左焦點F在直線l上,且直線l與曲線C交于A,B兩點.
(1)求m的值并寫出曲線C的直角坐標方程;
(2)求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=2an﹣n.
(Ⅰ)證明數(shù)列{an+1}是等比數(shù)列,求數(shù)列{an}的通項公式;
(Ⅱ)記bn= + ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某工廠兩車間工人掌握某技術情況,現(xiàn)從這兩車間工人中分別抽查名和名工人,經(jīng)測試,將這名工人的測試成績編成的莖葉圖若成績在以上(包括)定義為“良好,成績在以下定義為“合格”。已知車間工人的成績的平均數(shù)為,車間工人的成績的中位數(shù)為.

(1)求,的值;

(2)求車間工人的成績的方差;

(3)在這名工人中,用分層抽樣的方法從 “良好”和“及格”中抽取,再從這人中選人,求至少有一人為“良好”的概率。

參考公式:方差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線與直線交于兩點,

(Ⅰ)當時,求在點處的切線方程;

(Ⅱ)若軸上存在點,當變動時,總有,試求出坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學生對其親屬30人的飲食習慣進行了一次調查,并用下圖所示的莖葉圖表示30人的飲食指數(shù).(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主)

(1)根據(jù)以上數(shù)據(jù)完成下面的2×2列聯(lián)表:

主食 蔬菜

主食 肉類

總計

50歲以下

50歲以上

總計

(2)能否在犯錯誤的概率不超過0.010的前提下認為“其親屬的飲食習慣與年齡有關”?并寫出簡要分析.

附參考公式:

查看答案和解析>>

同步練習冊答案