【題目】如圖,以等腰直角三角形ABC的斜邊BC上的高AD為折痕,把△ABD和△ACD折成互相垂直的兩個平面后,某學生得出下列四個結論:
①BD⊥AC;
②△BAC是等邊三角形;
③三棱錐D-ABC是正三棱錐;
④平面ADC⊥平面ABC.
其中正確的是( )
A.①②④B.①②③
C.②③④D.①③④
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,短軸長為4.
(1)求橢圓的方程;
(2)過點作兩條直線,分別交橢圓于兩點(異于),當直線,的斜率之和為4時,直線恒過定點,求出定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用“算籌”表示數是我國古代計數方法之一,計數形式有縱式和橫式兩種,如圖1所示.金元時期的數學家李治在《測圓海鏡》中記載:用“天元術”列方程,就是用算籌來表示方程中各項的系數.所謂“天元術”,即是一種用數學符號列方程的方法,“立天元一為某某”,意即“設為某某”.如圖2所示的天元式表示方程,其中表示方程各項的系數,均為籌算數碼,在常數項旁邊記一“太”字或在一次項旁邊記一“元”字,“太”或“元”向上每層減少一次冪,向下每層增加一次冪.試根據上述數學史料,判斷圖3所示的天元式表示的方程是________________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點F與拋物線焦點重合,且橢圓的離心率為,過軸正半軸一點 且斜率為的直線交橢圓于兩點.
(1)求橢圓的標準方程;
(2)是否存在實數使以線段為直徑的圓經過點,若存在,求出實數的值;若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某媒體為調查喜愛娛樂節(jié)目是否與觀眾性別有關,隨機抽取了30名男性和30名女性觀眾,抽查結果用等高條形圖表示如圖:
喜歡節(jié)目A | 不喜歡節(jié)目A | 總計 | |
男性觀眾 | |||
女性觀眾 | |||
總計 |
(1)根據該等高條形圖,完成右上列聯(lián)表,并用獨立性檢驗的方法分析,則在犯錯誤的概率不超過多少的前提下認為喜歡娛樂節(jié)目與觀眾性別有關?
(2)從男性觀眾中按喜歡節(jié)目與否,用分層抽樣的方法抽取5名做進一步調查.從這5名中任選2名,求恰有1名喜歡節(jié)目和1名不喜歡節(jié)目的概率.
附:
0.100 | 0.050 | 0.010 | 0.00 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某企業(yè)中隨機抽取了5名員工測試他們的藝術愛好指數和創(chuàng)新靈感指數,統(tǒng)計結果如下表(注:指數值越高素質越優(yōu)秀):
(1)求創(chuàng)新靈感指數關于藝術愛好指數的線性回歸方程;
(2)企業(yè)為提高員工的藝術愛好指數,要求員工選擇音樂和繪畫中的一種進行培訓,培訓音樂次數對藝術愛好指數的提高量為,培訓繪畫次數對藝術愛好指數的提高量為,其中為參加培訓的某員工已達到的藝術愛好指數.藝術愛好指數已達到3的員工甲選擇參加音樂培訓,藝術愛好指數已達到4的員工乙選擇參加繪畫培訓,在他們都培訓了20次后,估計誰的創(chuàng)新靈感指數更高?
參考公式:回歸方程中,,.
參考數據:,
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com