精英家教網 > 高中數學 > 題目詳情

【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會開汽車到離家最近的輕軌站,將車停放在輕軌站停車場,然后進站乘輕軌出行,這給輕軌站停車場帶來很大的壓力.某輕軌站停車場為了解決這個問題,決定對機動車停車施行收費制度,收費標準如下:4小時內(含4小時)每輛每次收費5元;超過4小時不超過6小時,每增加一小時收費增加3元;超過6小時不超過8小時,每增加一小時收費增加4元,超過8小時至24小時內(含24小時)收費30元;超過24小時,按前述標準重新計費.上述標準不足一小時的按一小時計費.為了調查該停車場一天的收費情況,現統(tǒng)計1000輛車的停留時間(假設每輛車一天內在該停車場僅停車一次),得到下面的頻數分布表:

(小時)

頻數(車次)

100

100

200

200

350

50

以車輛在停車場停留時間位于各區(qū)間的頻率代替車輛在停車場停留時間位于各區(qū)間的概率.

1)現在用分層抽樣的方法從上面1000輛車中抽取了100輛車進行進一步深入調研,記錄并統(tǒng)計了停車時長與司機性別的列聯表:

合計

不超過6小時

30

6小時以上

20

合計

100

完成上述列聯表,并判斷能否有90%的把握認為“停車是否超過6小時”與性別有關?

2)(i表示某輛車一天之內(含一天)在該停車場停車一次所交費用,求的概率分布列及期望;

ii)現隨機抽取該停車場內停放的3輛車,表示3輛車中停車費用大于的車輛數,求的概率.

參考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

【答案】1)列聯表見解析,沒有超過90%的把握認為停車是否超過6小時與性別有關;(2)(i)分布列見解析,;(ii

【解析】

1)先根據頻數分布表填寫列聯表,再將數據代入公式求解即可;

2)(i的可取值為5,8,11,15,19,30,根據頻數分布表分別求得概率,進而得到分布列,并求得期望;(ii)先求得,,進而求得概率即可

1)由題,不超過6小時的頻率為,100輛車中有40輛不超過6小時,60輛超過6小時,

列聯表如下:

合計

不超過6小時

10

30

40

6小時以上

20

40

60

合計

30

70

100

根據上表數據代入公式可得

所以沒有超過90%的把握認為停車是否超過6小時與性別有關

2)(i)由題意知:的可取值為5,8,11,15,19,30,

所以的分布列為:

5

8

11

15

19

30

ii)由題意得,所以,

所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】河北省高考綜合改革從2018年秋季入學的高一年級學生開始實施,新高考將實行“3+1+2”模式,其中3表示語文、數學、外語三科必選,1表示從物理、歷史兩科中選擇一科,2表示從化學、生物、政治、地理四科中選擇兩科.某校2018級入學的高一學生選科情況如下表:

選科組合

物化生

物化政

物化地

物生政

物生地

物政地

史政地

史政化

史生政

史地化

史地生

史化生

合計

130

45

55

30

25

15

30

10

40

10

15

20

425

100

45

50

35

35

35

40

20

55

15

25

20

475

合計

230

90

105

65

60

50

70

30

95

25

40

40

900

1)完成下面的列聯表,并判斷是否在犯錯誤概率不超過0.01的前提下,認為“選擇物理與學生的性別有關”?

2)以頻率估計概率,從該校2018級高一學生中隨機抽取3名同學,設這三名同學中選擇物理的人數為,求的分布列和數學期望.

選擇物理

不選擇物理

合計

425

475

合計

900

附表及公式:

0.150

0.100

0.050

0.010

2.072

2.706

3.841

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓)的一個焦點與拋物線的焦點重合,且離心率為.

1)求橢圓的標準方程;

2)過焦點的直線與拋物線交于,兩點,與橢圓交于,兩點,滿足,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】公元263年左右,我國古代數學家劉徽用圓內接正多邊形的面積去逼近圓的面積求圓周率,他從單位圓內接正六邊形算起,令邊數一倍一倍地增加,即12,24,48,,192,,逐個算出正六邊形,正十二邊形,正二十四邊形,,正一百九十二邊形,的面積,這些數值逐步地逼近圓面積,劉徽算到了正一百九十二邊形,這時候的近似值是3.141024,劉徽稱這個方法為“割圓術”,并且把“割圓術”的特點概括為“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.劉徽這種想法的可貴之處在于用已知的、可求的來逼近未知的、要求的,用有限來逼近無窮,這種思想極其重要,對后世產生了巨大影響.按照上面“割圓術”,用正二十四邊形來估算圓周率,則的近似值是( )(精確到.(參考數據

A.3.14B.3.11C.3.10D.3.05

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解某中學學生對《中華人民共和國交通安全法》的了解情況,調查部門在該校進行了一次問卷調查(共12道題),從該校學生中隨機抽取40人,統(tǒng)計了每人答對的題數,將統(tǒng)計結果分成,,,六組,得到如下頻率分布直方圖.

1)若答對一題得10分,未答對不得分,估計這40人的成績的平均分(同一組中的數據用該組區(qū)間的中點值作代表);

2)若從答對題數在內的學生中隨機抽取2人,求恰有1人答對題數在內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,直線l與橢圓C交于P,Q兩點,且點M滿足.

1)若點,求直線的方程;

2)若直線l過點且不與x軸重合,過點M作垂直于l的直線y軸交于點,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設中心在原點O,焦點在x軸上的橢圓C過點FC的右焦點,⊙F的方程為

1)求C的方程;

2)若直線與⊙O相切,與⊙F交于M、N兩點,與C交于P、Q兩點,其中M、P在第一象限,記⊙O的面積為,求取最大值時,直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】兩城市相距,現計劃在兩城市外以為直徑的半圓上選擇一點建造垃圾處理場,其對城市的影響度與所選地點到城市的距離有關,對城和城的總影響度為城和城的影響度之和,記點到城的距離為,建在處的垃圾處理場對城和城的總影響度為,統(tǒng)計調查表明:垃圾處理場對城的影響度與所選地點到城的距離的平方成反比,比例系數為4,對城的影響度與所選地點到城的距離的平方成反比,比例系數為,當垃圾處理場建在的中點時,對城和城的總影響度為0.065

1)將表示成的函數;

2)判斷上是否存在一點,使建在此處的垃圾處理場對城和城的總影響度最小?若存在,求出該點到城的距離;若不存在,說明理由;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱錐中,BO、AOCO所在直線兩兩垂直,且AO=CO,∠BAO=60°,EAC的中點,三棱錐的體積為

(1)求三棱錐的高;

(2)在線段AB上取一點D,當D在什么位置時,的夾角大小為

查看答案和解析>>

同步練習冊答案